forked from mtreml/squeezenet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharchitecture.py
executable file
·459 lines (351 loc) · 17 KB
/
architecture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
import re
import numpy as np
import tensorflow as tf
from math import ceil
import cityscapes_input
FLAGS = tf.app.flags.FLAGS
debug = 1
# Global constants describing the Cityscapes data set.
IMAGE_WIDTH = cityscapes_input.IMAGE_WIDTH
IMAGE_HEIGHT = cityscapes_input.IMAGE_HEIGHT
IMAGE_CHANNELS = cityscapes_input.IMAGE_CHANNELS
NUM_CLASSES = cityscapes_input.NUM_CLASSES
MEAN = cityscapes_input.MEAN
# Constants describing the training process.
tf.app.flags.DEFINE_integer('batch_size', 16,
"""Number of images to process in a batch.""")
MOVING_AVERAGE_DECAY = 0.9999 # The decay to use for the moving average.
NUM_EPOCHS_PER_DECAY = 500.0 # Epochs after which learning rate decays.
LEARNING_RATE_DECAY_FACTOR = 0.1 # Learning rate decay factor.
INITIAL_LEARNING_RATE = 1e-4 # Initial learning rate.
wd = 2e-4 # Weight decay
# If a model is trained with multiple GPUs, prefix all Op names with tower_name
# to differentiate the operations. Note that this prefix is removed from the
# names of the summaries when visualizing a model.
TOWER_NAME = 'tower'
def _activation_summary(x):
"""Helper to create summaries for activations.
Creates a summary that provides a histogram of activations.
Creates a summary that measure the sparsity of activations.
Args:
x: Tensor
Returns:
nothing
"""
# Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
# session. This helps the clarity of presentation on tensorboard.
tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
tf.histogram_summary(tensor_name + '/activations', x)
tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
def _variable_on_cpu(name, shape, initializer):
"""Helper to create a Variable stored on CPU memory.
Args:
name: name of the variable
shape: list of ints
initializer: initializer for Variable
Returns:
Variable Tensor
"""
with tf.device('/cpu:0'):
dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
var = tf.get_variable(name, shape, initializer=initializer, dtype=dtype)
return var
def inputs(phase='train'):
"""Construct input for CIFAR evaluation using the Reader ops.
Args:
eval_data: bool, indicating if one should use the train or eval data set.
Returns:
images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
labels: Labels. 1D tensor of [batch_size] size.
Raises:
ValueError: If no data_dir
"""
images, labels = cityscapes_input.inputs(phase)
return images, labels
def inference(images, train=True):
"""Build the model up to where it may be used for inference.
Parameters
----------
images : Images placeholder, from inputs().
train : whether the network is used for train of inference
Returns
-------
softmax_linear : Output tensor with the computed logits.
"""
if train:
batch_size = FLAGS.batch_size
else:
batch_size = 1
with tf.name_scope('Processing') :
red, green, blue = tf.split(3, 3, images)
bgr = tf.concat(3, [
blue - MEAN[0],
green - MEAN[1],
red - MEAN[2],
])
bgr.set_shape([batch_size, IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_CHANNELS])
#################
### ENCODER
#################
conv1 = _convolution_layer(bgr, [3,3,3,64], "conv1")
pool1 = _max_pool(conv1, 'pool1', debug)
tf.image_summary("pool1", tf.expand_dims(pool1[:,:,:,0], dim=3))
fire2_squeeze1x1 = _convolution_layer(pool1, [1,1,64,16], "fire2_squeeze1x1")
fire2_expand1x1 = _convolution_layer(fire2_squeeze1x1, [1,1,16,64], "fire2_expand1x1")
fire2_expand3x3 = _convolution_layer(fire2_squeeze1x1, [3,3,16,64], "fire2_expand3x3")
fire2_concat = tf.concat(3, [fire2_expand1x1, fire2_expand3x3])
fire3_squeeze1x1 = _convolution_layer(fire2_concat, [1,1,128,16], "fire3_squeeze1x1")
tf.image_summary("fire3_squeeze1x1", tf.expand_dims(fire3_squeeze1x1[:,:,:,0], dim=3))
fire3_expand1x1 = _convolution_layer(fire3_squeeze1x1, [1,1,16,64], "fire3_expand1x1")
fire3_expand3x3 = _convolution_layer(fire3_squeeze1x1, [3,3,16,64], "fire3_expand3x3")
fire3_concat = tf.concat(3, [fire3_expand1x1, fire3_expand3x3])
pool3 = _max_pool(fire3_concat, 'pool3', debug)
tf.image_summary("pool3", tf.expand_dims(pool3[:,:,:,0], dim=3))
fire4_squeeze1x1 = _convolution_layer(pool3, [1,1,128,128], "fire4_squeeze1x1")
fire4_expand1x1 = _convolution_layer(fire4_squeeze1x1, [1,1,128,128], "fire4_expand1x1")
fire4_expand3x3 = _convolution_layer(fire4_squeeze1x1, [3,3,128,128], "fire4_expand3x3")
fire4_concat = tf.concat(3, [fire4_expand1x1, fire4_expand3x3])
fire5_squeeze1x1 = _convolution_layer(fire4_concat, [1,1,256,128], "fire5_squeeze1x1")
tf.image_summary("fire5_squeeze1x1", tf.expand_dims(fire5_squeeze1x1[:,:,:,0], dim=3))
fire5_expand1x1 = _convolution_layer(fire5_squeeze1x1, [1,1,128,128], "fire5_expand1x1")
fire5_expand3x3 = _convolution_layer(fire5_squeeze1x1, [3,3,128,128], "fire5_expand3x3")
fire5_concat = tf.concat(3, [fire5_expand1x1, fire5_expand3x3])
pool5 = _max_pool(fire5_concat, 'pool5', debug)
tf.image_summary("pool5", tf.expand_dims(pool5[:,:,:,0], dim=3))
fire6_squeeze1x1 = _convolution_layer(pool5, [1,1,256,48], "fire6_squeeze1x1")
tf.image_summary("fire6_squeeze1x1", tf.expand_dims(fire6_squeeze1x1[:,:,:,0], dim=3))
fire6_expand1x1 = _convolution_layer(fire6_squeeze1x1, [1,1,48,192], "fire6_expand1x1")
fire6_expand3x3 = _convolution_layer(fire6_squeeze1x1, [3,3,48,192], "fire6_expand3x3")
fire6_concat = tf.concat(3, [fire6_expand1x1, fire6_expand3x3])
fire7_squeeze1x1 = _convolution_layer(fire6_concat, [1,1,384,48], "fire7_squeeze1x1")
tf.image_summary("fire7_squeeze1x1", tf.expand_dims(fire7_squeeze1x1[:,:,:,0], dim=3))
fire7_expand1x1 = _convolution_layer(fire7_squeeze1x1, [1,1,48,192], "fire7_expand1x1")
fire7_expand3x3 = _convolution_layer(fire7_squeeze1x1, [3,3,48,192], "fire7_expand3x3")
fire7_concat = tf.concat(3, [fire7_expand1x1, fire7_expand3x3])
fire8_squeeze1x1 = _convolution_layer(fire7_concat, [1,1,384,64], "fire8_squeeze1x1")
tf.image_summary("fire8_squeeze1x1", tf.expand_dims(fire8_squeeze1x1[:,:,:,0], dim=3))
fire8_expand1x1 = _convolution_layer(fire8_squeeze1x1, [1,1,64,256], "fire8_expand1x1")
fire8_expand3x3 = _convolution_layer(fire8_squeeze1x1, [3,3,64,256], "fire8_expand3x3")
fire8_concat = tf.concat(3, [fire8_expand1x1, fire8_expand3x3])
fire9_squeeze1x1 = _convolution_layer(fire8_concat, [1,1,512,64], "fire9_squeeze1x1")
tf.image_summary("fire9_squeeze1x1", tf.expand_dims(fire9_squeeze1x1[:,:,:,0], dim=3))
fire9_expand1x1 = _convolution_layer(fire9_squeeze1x1, [1,1,64,256], "fire9_expand1x1")
fire9_expand3x3 = _convolution_layer(fire9_squeeze1x1, [3,3,64,256], "fire9_expand3x3")
fire9_concat = tf.concat(3, [fire9_expand1x1, fire9_expand3x3])
drop9 = tf.nn.dropout(fire9_concat, keep_prob=0.5, name="drop9")
score_fr = _convolution_layer(drop9, [1,1,512,NUM_CLASSES], "score_fr")
tf.image_summary("score_fr", tf.expand_dims(score_fr[:,:,:,0], dim=3))
#################
### DECODER
#################
upscore2 = _upscore_layer(score_fr,
shape=pool3.get_shape(),
num_classes=NUM_CLASSES,
debug=debug, name='upscore2',
ksize=4, stride=2)
tf.image_summary("upscore2", tf.expand_dims(upscore2[:,:,:,0], dim=3))
sharpmask3 = SharpMaskBypass(fire5_concat, upscore2, name='sharpmask3')
upscore4 = _upscore_layer(sharpmask3,
shape=pool1.get_shape(),
num_classes=NUM_CLASSES,
debug=debug, name='upscore4',
ksize=4, stride=2)
tf.image_summary("upscore4", tf.expand_dims(upscore4[:,:,:,0], dim=3))
sharpmask2 = SharpMaskBypass(fire3_concat, upscore4, name='sharpmask2')
upscore8 = _upscore_layer(sharpmask2,
shape=conv1.get_shape(),
num_classes=NUM_CLASSES,
debug=debug, name='upscore8',
ksize=4, stride=2)
tf.image_summary("upscore8", tf.expand_dims(upscore8[:,:,:,0], dim=3))
sharpmask1 = SharpMaskBypass(conv1, upscore8, name='sharpmask1')
logits = sharpmask1
print("Logits has shape", logits.get_shape())
# predict for summary
logits = tf.reshape(logits, (-1, NUM_CLASSES))
epsilon = tf.constant(value=1e-8)
logits = logits + epsilon
predictions = tf.reshape(tf.argmax(logits, dimension=1), (batch_size, IMAGE_HEIGHT, IMAGE_WIDTH, 1))
print("Predictions has dtype", predictions.dtype, "and shape", predictions.get_shape())
tf.image_summary('labels_prediction',
tf.cast(tf.image.grayscale_to_rgb(predictions),
dtype=tf.float32),
max_images=2)
return logits
def SharpMaskBypass(from_enc, from_dec, name):
print('SharpMaskBypass %s' % name)
enc_features = from_enc.get_shape()[3].value
from_enc_conv = _convolution_layer(from_enc, [3,3,enc_features,32], name+"_3x3conv_from_enc")
concat = tf.concat(3, [from_enc_conv, from_dec])
dec_features = from_dec.get_shape()[3].value
to_dec = _convolution_layer(concat, [3,3,dec_features+32,NUM_CLASSES], name+"_3x3conv_to_dec")
return to_dec
def _max_pool(bottom, name, debug):
pool = tf.nn.max_pool(bottom, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
padding='SAME', name=name)
print('Layer name: %s' % name)
print('Layer shape:%s' % str(pool.get_shape()))
if debug:
pool = tf.Print(pool, [pool.get_shape()],
message='Shape of %s' % name,
summarize=4, first_n=1)
_activation_summary(pool)
return pool
def _convolution_layer(bottom, shape, name):
with tf.variable_scope(name) :
print('Layer name: %s' % name)
print('Layer shape: %s' % str(shape))
# get number of input channels
in_features = bottom.get_shape()[3].value
out_features = shape[3]
print('In features: %s' % in_features)
print('Out features: %s' % out_features)
# He initialization
if "sharpmask" in name:
stddev = 0.0001
else:
stddev = (2 / (in_features + out_features))**0.5
filt = _variable_with_weight_decay(shape, stddev, wd)
conv = tf.nn.conv2d(bottom, filt, strides=[1, 1, 1, 1], padding='SAME')
conv_biases = _bias_variable([filt.get_shape()[3]], constant=0.0)
bias = tf.nn.bias_add(conv, conv_biases)
if name == 'score_fr':
out = bias
else:
out = tf.nn.elu(bias)
# Add summary to Tensorboard
_activation_summary(out)
return out
def _variable_with_weight_decay(shape, stddev, wd):
"""Helper to create an initialized Variable with weight decay.
Note that the Variable is initialized with a truncated normal
distribution.
A weight decay is added only if one is specified.
Args:
name: name of the variable
shape: list of ints
stddev: standard deviation of a truncated Gaussian
wd: add L2Loss weight decay multiplied by this float. If None, weight
decay is not added for this Variable.
Returns:
Variable Tensor
"""
initializer = tf.truncated_normal_initializer(stddev=stddev)
var = tf.get_variable('weights', shape=shape,
initializer=initializer)
if wd and (not tf.get_variable_scope().reuse):
weight_decay = tf.mul(tf.nn.l2_loss(var), wd, name='weight_loss')
tf.add_to_collection('losses', weight_decay)
return var
def _bias_variable(shape, constant=0.0):
initializer = tf.constant_initializer(constant)
return tf.get_variable(name='biases', shape=shape,
initializer=initializer)
def _upscore_layer(bottom, shape, num_classes, name, debug, ksize=4, stride=2):
strides = [1, stride, stride, 1]
with tf.variable_scope(name) :
in_features = bottom.get_shape()[3].value
if shape is None:
# Compute shape out of Bottom
in_shape = bottom.get_shape()
h = ((in_shape[1] - 1) * stride) + 1
w = ((in_shape[2] - 1) * stride) + 1
new_shape = [in_shape[0], h, w, num_classes]
else:
new_shape = [shape[0], shape[1], shape[2], num_classes]
output_shape = tf.pack(new_shape)
logging.debug("Layer: %s, Fan-in: %d" % (name, in_features))
f_shape = [ksize, ksize, num_classes, in_features]
weights = get_deconv_filter(f_shape)
deconv = tf.nn.conv2d_transpose(bottom, weights, output_shape,
strides=strides, padding='SAME')
deconv.set_shape(new_shape)
print('Layer name: %s' % name)
print('Layer shape: %s' % str(deconv.get_shape()))
if debug:
deconv = tf.Print(deconv, [deconv.get_shape()],
message='Shape of %s' % name,
summarize=4, first_n=1)
_activation_summary(deconv)
return deconv
def get_deconv_filter(f_shape):
width = f_shape[0]
heigh = f_shape[0]
f = ceil(width/2.0)
c = (2 * f - 1 - f % 2) / (2.0 * f)
bilinear = np.zeros([f_shape[0], f_shape[1]])
for x in range(width):
for y in range(heigh):
value = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
bilinear[x, y] = value
weights = np.zeros(f_shape)
for i in range(f_shape[2]):
weights[:, :, i, i] = bilinear
init = tf.constant_initializer(value=weights,
dtype=tf.float32)
return tf.get_variable(name="up_filter", initializer=init,
shape=weights.shape)
def loss(logits, labels, head=None):
"""Calculate the loss from the logits and the labels.
Args:
logits: tensor, float - [batch_size, width, height, num_classes].
Use vgg_fcn.up as logits.
labels: Labels tensor, int32 - [batch_size, width, height, num_classes].
The ground truth of your data.
head: numpy array - [num_classes]
Weighting the loss of each class
Optional: Prioritize some classes
Returns:
loss: Loss tensor of type float.
"""
with tf.name_scope('loss') :
# adapt logits
logits = tf.reshape(logits, (-1, NUM_CLASSES))
epsilon = tf.constant(value=1e-4)
logits = logits + epsilon
# create onehot labels
labels = tf.cast(labels, tf.int64)
labels = tf.squeeze(labels, squeeze_dims=[3])
onehot_labels = tf.one_hot(labels, depth=NUM_CLASSES, dtype=tf.int64)
print("onehot labels", onehot_labels.get_shape())
tf.image_summary('labels onehot',
tf.expand_dims(tf.cast(tf.argmax(onehot_labels, dimension=3), dtype=tf.float32), 3),
max_images=2)
labels = tf.to_float(tf.reshape(onehot_labels, (-1, NUM_CLASSES)))
softmax = tf.nn.softmax(logits)
if head is not None:
cross_entropy = -tf.reduce_sum(tf.mul(labels * tf.log(softmax),
head), reduction_indices=[1])
else:
cross_entropy = -tf.reduce_sum(
labels * tf.log(softmax), reduction_indices=[1])
cross_entropy_mean = tf.reduce_mean(cross_entropy,
name='xentropy_mean')
tf.add_to_collection('losses', cross_entropy_mean)
loss = tf.add_n(tf.get_collection('losses'), name='total_loss')
return loss
def _add_loss_summaries(total_loss):
"""Add summaries for losses in CIFAR-10 model.
Generates moving average for all losses and associated summaries for
visualizing the performance of the network.
Args:
total_loss: Total loss from loss().
Returns:
loss_averages_op: op for generating moving averages of losses.
"""
# Compute the moving average of all individual losses and the total loss.
loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
losses = tf.get_collection('losses')
loss_averages_op = loss_averages.apply(losses + [total_loss])
# Attach a scalar summary to all individual losses and the total loss; do the
# same for the averaged version of the losses.
for l in losses + [total_loss]:
# Name each loss as '(raw)' and name the moving average version of the loss
# as the original loss name.
tf.scalar_summary(l.op.name +' (raw)', l)
tf.scalar_summary(l.op.name, loss_averages.average(l))
return loss_averages_op