-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
356 lines (292 loc) · 11.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
'''
Test our data with various machine learned models
'''
import sys, math, argparse
import numpy as np
import pylab as pl
from sklearn import cross_validation, neighbors, feature_selection, svm
from sklearn.cross_validation import StratifiedKFold
from sklearn.grid_search import GridSearchCV
from sklearn.tree import DecisionTreeRegressor
from sklearn.grid_search import GridSearchCV
from sklearn.datasets import load_files
from sklearn.ensemble import RandomForestRegressor
'''
Prepare the dataset to be used in algorithms
Params:
f: filepath
Returns:
X: feature instances
y: label instances
'''
def load_data(f):
# read in the data as feature, label arrays
data = np.loadtxt(f, delimiter=',')
X = data[:,:-2]
y = data[:,-2:-1]
y_vegas = data[:,-1:]
# normalize the data with l2 norm
row, col = X.shape
for r in range(row):
l2 = np.linalg.norm(X[r,:])
X[r,:] /= l2
return X, y, y_vegas
'''
Calculate the average difference between predicted and expected spreads
Params:
pred: predicted spreads
real: expected spreads
multidimen: whether or not array shapes are (n,0) or (n,)
Returns:
avg: average difference
'''
def avg_spread_difference(pred, real, multidimen):
diffs = []
if multidimen:
row, col = pred.shape
for x in range(row):
p = pred[x,0]
r = real[x,0]
diffs.append(abs(p-r))
else:
row = len(pred)
for x in range(row):
p = pred[x]
r = real[x]
diffs.append(abs(p-r))
avg = sum(diffs) / len(diffs)
return avg
'''
Calculates the percentage of times we predict the correct winner
Params:
pred: predicted spreads
real: expected spreads
multidimen: whether or not array shapes are (n,0) or (n,)
Returns:
pctg: pctg of correct predictions
'''
def percent_same_winner(pred, real, multidimen):
correct = 0.0
if multidimen:
row, col = pred.shape
for x in range(row):
p = pred[x,0]
r = real[x,0]
if (p > 0.0 and r > 0.0) or (p < 0.0 and r < 0.0) or (p == 0.0 and r == 0.0):
correct += 1.0
else:
row = len(pred)
for x in range(row):
p = pred[x]
r = real[x]
if (p > 0.0 and r > 0.0) or (p < 0.0 and r < 0.0) or (p == 0.0 and r == 0.0):
correct += 1.0
pctg = correct / row
return pctg
def percent_vegas_winner(pred, real, vegas, multidimen):
correct = 0.0
if multidimen:
row, col = pred.shape
for x in range(row):
p = pred[x,0]
r = real[x,0]
if (p > 0.0 and r > 0.0) or (p < 0.0 and r < 0.0) or (p == 0.0 and r == 0.0):
correct += 1.0
else:
row = len(pred)
for x in range(row):
p = pred[x]
r = real[x]
v = vegas[x]
actual_diff = r - v
pred_diff = p - v
if math.copysign(1,actual_diff[0]) == math.copysign(1,pred_diff[0]):
correct += 1.0
pctg = correct / row
return pctg
def f_regression(X,y):
return feature_selection.f_regression(X,y,center=False)
'''
Runs kNN regression over various k values
Params:
X: features
y: labels
'''
def knn(X_train,y_train,X_test,y_test):
#feature selection
#featureSelector = feature_selection.SelectKBest(score_func=f_regression,k=10)
#Xselected = featureSelector.fit_transform(X,y)
# split the data into train, test set
# X, X_val, y, y_val = cross_validation.train_test_split(X,y,test_size=0.2, random_state=0)
k_fold = cross_validation.KFold(n=len(y), n_folds=5, indices=True, shuffle=True)
n_neighbors = [1,2,5,10,50,100]
for k in n_neighbors:
for train, test in k_fold:
spreads_train = []
spreads_test = []
acc_train = []
acc_test = []
score_train = []
score_test = []
X_train , y_train = (X[train], y[train])
X_test, y_test = (X[test], y[test])
knn = neighbors.KNeighborsRegressor(k)
knn.fit(X_train, y_train)
# calculate training errors
pred = knn.predict(X_train)
spreads_train.append(avg_spread_difference(pred, y_train, True))
acc_train.append(percent_same_winner(pred, y_train, True))
score_train.append(knn.score(X_train, y_train))
# calculate test errors
pred = knn.predict(X_test)
spreads_test.append(avg_spread_difference(pred, y_test, True))
acc_test.append(percent_same_winner(pred, y_test, True))
score_test.append(knn.score(X_test, y_test))
print "\n>> TRAIN, k=", k
print "Avg. Spread:\t", sum(spreads_train) / float(len(spreads_train))
print "Avg. Winner:\t", sum(acc_train) / float(len(acc_train))
print "Avg. R^2 Score:\t", sum(score_train) / float(len(score_train))
print "\n>> TEST, k=", k
print "Avg. Spread:\t", sum(spreads_test) / float(len(spreads_test))
print "Avg. Winner:\t", sum(acc_test) / float(len(acc_test))
print "Avg. R^2 Score:\t", sum(score_test) / float(len(score_test))
'''
Vegas winner prediction for kNN
'''
def knn_vegas(X_train,y_train,X_test,y_test,y_vegas_test):
n_neighbors = [1,2,5,10,20,30,40,50,60,70,80,90,100]
for k in n_neighbors:
knn = neighbors.KNeighborsRegressor(n_neighbors=k,weights='distance',algorithm='auto')
knn.fit(X_train, y_train)
# calculate test errors
pred = knn.predict(X_test)
print "\n>> TEST, k=", k
print "Vegas Winner:\t", percent_vegas_winner(pred, y_test, y_vegas_test,False)
'''
Runs random forest regression over various forest sizes
Params:
X: features
y: labels
'''
def rf(X,y):
k_fold = cross_validation.KFold(n=len(y), n_folds=5, indices=True, shuffle=True)
size_forest = [10, 25, 50, 100]
for n in size_forest:
for train, test in k_fold:
spreads_train = []
spreads_test = []
acc_train = []
acc_test = []
score_train = []
score_test = []
X_train, y_train = (X[train], y[train])
X_test, y_test = (X[test], y[test])
rf = RandomForestRegressor(n_estimators=n)
rf.fit(X_train, y_train)
# calculate training errors
pred = rf.predict(X_train)[:]
spreads_train.append(avg_spread_difference(pred, y_train, False))
acc_train.append(percent_same_winner(pred, y_train, False))
score_train.append(rf.score(X_train, y_train))
# calculate test errors
pred = rf.predict(X_test)[:]
spreads_test.append(avg_spread_difference(pred, y_test, False))
acc_test.append(percent_same_winner(pred, y_test, False))
score_test.append(rf.score(X_test, y_test))
print "\n>> TRAIN, size_forest=", n
print "Avg. Spread:\t", sum(spreads_train) / float(len(spreads_train))
print "Avg. Winner:\t", sum(acc_train) / float(len(acc_train))
print "Avg. R^2 Score:\t", sum(score_train) / float(len(score_train))
print "\n>> TEST, size_forest=", n
print "Avg. Spread:\t", sum(spreads_test) / float(len(spreads_test))
print "Avg. Winner:\t", sum(acc_test) / float(len(acc_test))
print "Avg. R^2 Score:\t", sum(score_test) / float(len(score_test))
'''
Runs decision tree regression over various depth values
Params:
X: features
y: labels
'''
def dt(X_train,y_train,X_test,y_test):
# split data
# X, X_val, y, y_val = cross_validation.train_test_split(X,y,test_size=0.2, random_state=0)
k_fold = cross_validation.KFold(n=len(y), n_folds=5, indices=True, shuffle=True)
max_depth = [1,2, 3, 5, 10, 50, 80, 100]
for d in max_depth:
for train, test in k_fold:
spreads_train = []
spreads_test = []
acc_train = []
acc_test = []
score_train = []
score_test = []
X_train , y_train = (X[train], y[train])
X_test, y_test = (X[test], y[test])
dt = DecisionTreeRegressor(max_depth=d)
dt.fit(X_train, y_train)
# calculate training error
pred = dt.predict(X_train)[:]
spreads_train.append(avg_spread_difference(pred, y_train, False))
acc_train.append(percent_same_winner(pred, y_train, False))
score_train.append(dt.score(X_train, y_train))
pred = dt.predict(X_test)[:]
spreads_test.append(avg_spread_difference(pred, y_test, False))
acc_test.append(percent_same_winner(pred, y_test, False))
score_test.append(dt.score(X_test, y_test))
print "\n>> TRAIN, d=", d
print "Avg. Spread:\t", sum(spreads_train) / float(len(spreads_train))
print "Avg. Winner:\t", sum(acc_train) / float(len(acc_train))
print "Avg. R^2 Score:\t", sum(score_train) / float(len(score_train))
print "\n>> TEST, d=", d
print "Avg. Spread:\t", sum(spreads_test) / float(len(spreads_test))
print "Avg. Winner:\t", sum(acc_test) / float(len(acc_test))
print "Avg. R^2 Score:\t", sum(score_test) / float(len(score_test))
'''
SVM regression
'''
def svmTest(X_train,y_train,X_test,y_test,y_vegas_test):
y_train_composed = [x for [x] in y_train]
C_range = 10.0 ** np.arange(-2, 4)
gamma_range = 10.0 ** np.arange(-5, 4)
best_spread_difference = 1000
for c in C_range:
for gamma in gamma_range:
print c,gamma
svmRegressor = svm.SVR(kernel='rbf', C=c, gamma=gamma)
svmRegressor.fit(X_train, y_train_composed)
pred = svmRegressor.predict(X_test)[:]
curr_spread_difference = avg_spread_difference(pred, y_test, False)
try:
if curr_spread_difference < best_spread_difference:
print "############## TESTING ERROR C=",c," gamma=",gamma,"##############"
print "Spread:\t", curr_spread_difference
print "Winner:\t", percent_same_winner(pred, y_test, False)
best_spread_difference = curr_spread_difference
except:
best_spread_difference = curr_spread_difference
# print "############## TESTING ERROR C=",c," gamma=",gamma,"##############"
# print "Winner against the Line:\t", percent_vegas_winner(pred, y_test, y_vegas_test,False)
# best_spread_difference = curr_spread_difference
###############################################################################
argparser = argparse.ArgumentParser()
argparser.add_argument('training', type=file)
argparser.add_argument('testing', type=file)
argparser.add_argument('--knn', action='store_true', default=False)
argparser.add_argument('--dt', action='store_true', default=False)
argparser.add_argument('--svm', action='store_true', default=False)
argparser.add_argument('--rf', action='store_true', default=False)
args = argparser.parse_args()
X_train, y_train, y_vegas_train = load_data(args.training)
X_test, y_test, y_vegas_test = load_data(args.testing)
#X,y = load_data(args.training)
print X_train.shape, X_test.shape
if args.knn:
knn_vegas(X_train,y_train,X_test,y_test,y_vegas_test)
elif args.dt:
dt(X_train,y_train,X_test,y_test)
elif args.svm:
svmTest(X_train,y_train,X_test,y_test,y_vegas_test)
elif args.rf:
rf(X,y)
else:
print "Usage: [--knn] [--dt] [--rf] [--svm]"