forked from sha168/ADNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_train.py
172 lines (132 loc) · 6.98 KB
/
main_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#!/usr/bin/env python
import argparse
import time
import random
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
from torch.optim.lr_scheduler import MultiStepLR
from models.fewshot_anom import FewShotSeg ### Major functions (forward, negSim, getPrototype, ...)
from dataloading.datasets import TrainDataset as TrainDataset
from utils import * ### Minor functions (logger, evaluation metrics: Dice, IOU scores, ...)
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--data_root', type=str, required=True)
parser.add_argument('--save_root', type=str, required=True)
parser.add_argument('--dataset', type=str, required=True)
parser.add_argument('--n_sv', type=int, required=True) ### Not used???
parser.add_argument('--fold', type=int, required=True)
# Training specs.
parser.add_argument('--workers', default=4, type=int)
parser.add_argument('--steps', default=50000, type=int)
parser.add_argument('--n_shot', default=1, type=int)
parser.add_argument('--n_query', default=1, type=int)
parser.add_argument('--n_way', default=1, type=int)
parser.add_argument('--batch-size', default=1, type=int)
parser.add_argument('--max_iterations', default=1000, type=int) ### Training epochs
parser.add_argument('--lr', default=1e-3, type=float)
### Paper: a learning rate of 1e-3 with a decay rate of 0.98 per 1k epochs, and a weight decay of 5e-4 over 50k iterations
parser.add_argument('--lr_gamma', default=0.95, type=float) ### Paper: 0.98 ???
parser.add_argument('--momentum', default=0.9, type=float)
parser.add_argument('--weight-decay', default=0.0005, type=float)
parser.add_argument('--seed', default=None, type=int)
parser.add_argument('--bg_wt', default=0.1, type=float) ### Background classs weight to address class imbalance (Foreground classs weight=1)
parser.add_argument('--t_loss_scaler', default=1.0, type=float)
return parser.parse_args()
def main():
args = parse_arguments()
# Deterministic setting for reproducability.
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
# Set up logging.
logger = set_logger(args.save_root, 'train.log')
logger.info(args)
# Setup the path to save.
args.save_model_path = os.path.join(args.save_root, 'model.pth')
# Init model.
model = FewShotSeg(False) ###
model = nn.DataParallel(model.cuda())
# Init optimizer.
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
milestones = [(ii + 1) * 1000 for ii in range(args.steps // 1000 - 1)]
scheduler = MultiStepLR(optimizer, milestones=milestones, gamma=args.lr_gamma) ### pytorch: Decays the learning rate of each parameter group by gamma once the number of epoch reaches one of the milestones.
# Define loss function.
my_weight = torch.FloatTensor([args.bg_wt, 1.0]).cuda()
criterion = nn.NLLLoss(ignore_index=255, weight=my_weight)
# Enable cuDNN benchmark mode to select the fastest convolution algorithm.
cudnn.enabled = True
cudnn.benchmark = True
# Define data set and loader.
train_dataset = TrainDataset(args)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True, drop_last=True)
logger.info(' Training on images not in test fold: ' +
str([elem[len(args.data_root):] for elem in train_dataset.image_dirs]))
# Start training.
sub_epochs = args.steps // args.max_iterations ### It seems to be based on episode -> Maybe we can use actual epochs?
logger.info(' Start training ...')
for epoch in range(sub_epochs):
# Train.
batch_time, data_time, losses, q_loss, align_loss, t_loss = train(train_loader, model, criterion, optimizer,
scheduler, args) ### losses, q_loss, align_loss, t_loss -> see Log (logger.info) below
# Log
logger.info('============== Epoch [{}] =============='.format(epoch))
logger.info(' Batch time: {:6.3f}'.format(batch_time))
logger.info(' Loading time: {:6.3f}'.format(data_time))
logger.info(' Total Loss : {:.5f}'.format(losses))
logger.info(' Query Loss : {:.5f}'.format(q_loss))
logger.info(' Align Loss : {:.5f}'.format(align_loss))
logger.info(' Threshold Loss : {:.5f}'.format(t_loss))
# Save trained model.
logger.info(' Saving model ...')
torch.save(model.state_dict(), args.save_model_path)
def train(train_loader, model, criterion, optimizer, scheduler, args):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4f')
q_loss = AverageMeter('Query loss', ':.4f')
a_loss = AverageMeter('Align loss', ':.4f')
t_loss = AverageMeter('Threshold loss', ':.4f')
# Train mode.
model.train()
end = time.time()
for i, sample in enumerate(train_loader):
# Extract episode data.
support_images = [[shot.float().cuda() for shot in way]
for way in sample['support_images']]
support_fg_mask = [[shot.float().cuda() for shot in way]
for way in sample['support_fg_labels']]
query_images = [query_image.float().cuda() for query_image in sample['query_images']]
query_labels = torch.cat([query_label.long().cuda() for query_label in sample['query_labels']], dim=0)
# Log loading time.
data_time.update(time.time() - end)
# Compute outputs and losses.
query_pred, align_loss, thresh_loss = model(support_images, support_fg_mask, query_images,
train=True, t_loss_scaler=args.t_loss_scaler) ### FewShotSeg()
query_loss = criterion(torch.log(torch.clamp(query_pred, torch.finfo(torch.float32).eps,
1 - torch.finfo(torch.float32).eps)), query_labels)
loss = query_loss + align_loss + thresh_loss
# compute gradient and do SGD step
for param in model.parameters():
param.grad = None
loss.backward()
optimizer.step()
scheduler.step()
# Log loss.
losses.update(loss.item(), query_pred.size(0))
q_loss.update(query_loss.item(), query_pred.size(0))
a_loss.update(align_loss.item(), query_pred.size(0))
t_loss.update(thresh_loss.item(), query_pred.size(0))
# Log elapsed time.
batch_time.update(time.time() - end)
end = time.time()
return batch_time.avg, data_time.avg, losses.avg, q_loss.avg, a_loss.avg, t_loss.avg
if __name__ == '__main__':
main()