forked from sha168/ADNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_inference.py
163 lines (126 loc) · 6.16 KB
/
main_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#!/usr/bin/env python
import argparse
import random
import numpy as np
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
from torch.utils.data import DataLoader
from models.fewshot_anom import FewShotSeg
from dataloading.datasets import TestDataset
from dataloading.dataset_specifics import *
from utils import *
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--data_root', type=str, required=True)
parser.add_argument('--save_root', type=str, required=True)
parser.add_argument('--pretrained_root', type=str, required=True)
parser.add_argument('--fold', type=int, required=True)
parser.add_argument('--dataset', type=str, required=True)
parser.add_argument('--n_shot', default=1, type=int)
parser.add_argument('--all_slices', default=False, type=bool)
parser.add_argument('--EP1', default=False, type=bool)
parser.add_argument('--seed', default=None, type=int)
parser.add_argument('--workers', default=0, type=int)
return parser.parse_args()
def main():
args = parse_arguments()
# Deterministic setting for reproducability.
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
# Set up logging.
logger = set_logger(args.save_root, 'train.log')
logger.info(args)
# Setup the path to save.
args.save = os.path.join(args.save_root)
# Init model and load state_dict.
model = FewShotSeg(use_coco_init=False)
model = nn.DataParallel(model.cuda())
model.load_state_dict(torch.load(args.pretrained_root, map_location="cpu"))
# Data loader.
test_dataset = TestDataset(args)
query_loader = DataLoader(test_dataset,
batch_size=1,
shuffle=False,
num_workers=args.workers,
pin_memory=True,
drop_last=True)
# Inference.
logger.info(' Start inference ... Note: EP1 is ' + str(args.EP1))
logger.info(' Support: ' + str(test_dataset.support_dir[len(args.data_root):]))
logger.info(' Query: ' +
str([elem[len(args.data_root):] for elem in test_dataset.image_dirs]))
# Get unique labels (classes).
labels = get_label_names(args.dataset)
# Loop over classes.
class_dice = {}
class_iou = {}
for label_val, label_name in labels.items():
# Skip BG class.
if label_name is 'BG':
continue
logger.info(' *------------------Class: {}--------------------*'.format(label_name))
logger.info(' *--------------------------------------------------*')
# Get support sample + mask for current class.
support_sample = test_dataset.getSupport(label=label_val, all_slices=args.all_slices, N=args.n_shot)
test_dataset.label = label_val
# Infer.
with torch.no_grad():
scores = infer(model, query_loader, support_sample, args, logger, label_name)
# Log class-wise results
class_dice[label_name] = torch.tensor(scores.patient_dice).mean().item()
class_iou[label_name] = torch.tensor(scores.patient_iou).mean().item()
logger.info(' Mean class IoU: {}'.format(class_iou[label_name]))
logger.info(' Mean class Dice: {}'.format(class_dice[label_name]))
logger.info(' *--------------------------------------------------*')
# Log final results.
logger.info(' *-----------------Final results--------------------*')
logger.info(' *--------------------------------------------------*')
logger.info(' Mean IoU: {}'.format(class_iou))
logger.info(' Mean Dice: {}'.format(class_dice))
logger.info(' *--------------------------------------------------*')
def infer(model, query_loader, support_sample, args, logger, label_name):
# Test mode.
model.eval()
# Unpack support data.
support_image = [support_sample['image'][[i]].float().cuda() for i in range(support_sample['image'].shape[0])] # n_shot x 3 x H x W
support_fg_mask = [support_sample['label'][[i]].float().cuda() for i in range(support_sample['image'].shape[0])] # n_shot x H x W
# Loop through query volumes.
scores = Scores()
for i, sample in enumerate(query_loader):
# Unpack query data.
query_image = [sample['image'][i].float().cuda() for i in range(sample['image'].shape[0])] # [C x 3 x H x W]
query_label = sample['label'].long() # C x H x W
query_id = sample['id'][0].split('image_')[1][:-len('.nii.gz')]
# Compute output.
if args.EP1 is True:
# Match support slice and query sub-chunck.
query_pred = torch.zeros(query_label.shape[-3:])
C_q = sample['image'].shape[1]
idx_ = np.linspace(0, C_q, args.n_shot+1).astype('int')
for sub_chunck in range(args.n_shot):
support_image_s = [support_image[sub_chunck]] # 1 x 3 x H x W
support_fg_mask_s = [support_fg_mask[sub_chunck]] # 1 x H x W
query_image_s = query_image[0][idx_[sub_chunck]:idx_[sub_chunck+1]] # C' x 3 x H x W
query_pred_s, _, _ = model([support_image_s], [support_fg_mask_s], [query_image_s], train=False) # C x 2 x H x W
query_pred_s = query_pred_s.argmax(dim=1).cpu() # C x H x W
query_pred[idx_[sub_chunck]:idx_[sub_chunck+1]] = query_pred_s
else: # EP 2
query_pred, _, _ = model([support_image], [support_fg_mask], query_image, train=False) # C x 2 x H x W
query_pred = query_pred.argmax(dim=1).cpu() # C x H x W
# Record scores.
scores.record(query_pred, query_label)
# Log.
logger.info(' Tested query volume: ' + sample['id'][0][len(args.data_root):]
+ '. Dice score: ' + str(scores.patient_dice[-1].item()))
# Save predictions.
file_name = 'image_' + query_id + '_' + label_name + '.pt'
torch.save(query_pred, os.path.join(args.save, file_name))
return scores
if __name__ == '__main__':
main()