-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathshow_pca_plots.m
executable file
·235 lines (177 loc) · 7.71 KB
/
show_pca_plots.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
function show_pca_plots()
clc;
close all;
clear
%% Select case
%case_num = 1; % Case P1
%case_num = 2; % Case P2
case_num = 3; % small instance
if case_num == 1
N = 5000000; d = 100; r = 5;
elseif case_num == 2
N = 500000; d = 1000; r = 5;
elseif case_num == 3
N = 100000; d = 100; r = 5;
else
end
%% Define parameters
maxepoch = 100;
tolgradnorm = 1e-8;
%% Generate data
fprintf('generating data ... ');
x_sample = randn(d, N);
x_sample = diag(exprnd(2, d , 1))*x_sample;
x_sample = x_sample - repmat(mean(x_sample,2),1,size(x_sample,2));
%cond(x_sample)
fprintf('done.\n');
% Iput data as cell
data.x = mat2cell(x_sample, d, ones(N, 1)); %
%% Obtain solution
coeff = pca(x_sample');
x_star = coeff(:,1:r);
f_sol = -0.5/N*norm(x_star'*x_sample, 'fro')^2;
fprintf('f_sol: %.16e, cond = %.2f\n', f_sol, cond(x_sample));
%% Set manifold
problem.M = grassmannfactory(d, r);
problem.ncostterms = N;
problem.d = d;
problem.data = data;
%% Define problem definitions
problem.cost = @cost;
function f = cost(U)
f = -0.5*norm(U'*x_sample, 'fro')^2;
f = f/N;
end
problem.egrad = @egrad;
function g = egrad(U)
g = - x_sample*(x_sample'*U);
g = g/N;
end
problem.partialegrad = @partialegrad;
function g = partialegrad(U, indices)
len = length(indices);
x_sample_batchsize = x_sample(:,indices);
g = - x_sample_batchsize*(x_sample_batchsize'*U);
g = g/len;
end
problem.ehess = @ehess;
function gdot = ehess(U, Udot)
gdot = - x_sample*(x_sample'*Udot);
gdot = gdot/N;
end
problem.partialehess = @partialehess;
function gdot = partialehess(U, Udot, indices, square_hess_diag)
len = length(indices);
x_sub_sample = x_sample(:, indices);
gdot = - x_sub_sample * (x_sub_sample' * Udot);
gdot = gdot/len;
end
% % Consistency checks
% checkgradient(problem)
% pause;
% % Consistency checks
% checkhessian(problem)
% pause;
%% Run algorithms
% Initialize
Uinit = problem.M.rand();
% Run RSD
clear options;
options.maxiter = maxepoch;
options.tolgradnorm = tolgradnorm;
[~, ~, infos_sd, ~] = steepestdescent_mod(problem, Uinit, options);
% Run RCG
clear options;
options.maxiter = maxepoch;
options.tolgradnorm = tolgradnorm;
[~, ~, infos_cg, ~] = conjugategradient_mod(problem, Uinit, options);
% Run RLBFGS
clear options;
options.maxiter = maxepoch;
options.tolgradnorm = tolgradnorm;
[~, ~, infos_lbfgs] = lbfgs_mod(problem, Uinit, options);
% Run RSVRG
clear options;
inner_repeat = 5;
options.verbosity = 1;
options.batchsize = floor(N/100);
options.update_type = 'svrg';
options.stepsize = 0.001;
options.stepsize_type = 'fix';
options.stepsize_lambda = 0;
options.tolgradnorm = tolgradnorm;
options.boost = 0;
options.svrg_type = 2; % effective only for R-SVRG variants
options.maxinneriter = inner_repeat * N;
options.transport = 'ret_vector';
options.maxepoch = floor(maxepoch / (1 + inner_repeat)) * 2;
[~, ~, infos_svrg, ~] = Riemannian_svrg(problem, Uinit, options);
% Run RTR (basic)
clear options;
options.maxiter = maxepoch;
options.tolgradnorm = tolgradnorm;
options.samp_hess_init_size = N;
[~, ~, infos_tr, ~] = subsampled_rtr(problem, Uinit, options);
% Run Sub-sampled Hessian TR
clear options;
options.maxiter = maxepoch;
options.tolgradnorm = tolgradnorm;
options.samp_hess_scheme = 'fix';
options.samp_hess_init_size = floor(N/100);
options.useExp = true;
[~, ~, infos_subHtr_fix, ~] = subsampled_rtr(problem, Uinit, options);
% Run Sub-sampled Hessian & Gradient TR
clear options;
options.maxiter = maxepoch;
options.tolgradnorm = tolgradnorm;
options.samp_hess_scheme = 'fix';
options.samp_hess_init_size = floor(N/100);
options.samp_grad_scheme = 'fix';
options.samp_grad_init_size = floor(N/10);
options.useExp = true;
[~, ~, infos_subHGtr_fix, ~] = subsampled_rtr(problem, Uinit, options);
%% calculate optimality gap
optgap_sd = abs([infos_sd.cost] - f_sol);
optgap_cg = abs([infos_cg.cost] - f_sol);
optgap_lbfgs = abs([infos_lbfgs.cost] - f_sol);
optgap_svrg = abs([infos_svrg.cost] - f_sol);
optgap_tr = abs([infos_tr.cost] - f_sol);
optgap_subHtr_fix = abs([infos_subHtr_fix.cost] - f_sol);
optgap_subHGtr_fix = abs([infos_subHGtr_fix.cost] - f_sol);
%% Plots
fs = 20;
line_color = {[255, 128, 0], [76, 153, 0], [255,0,255], [204, 204, 0], [0, 0, 255], [255, 0, 0], [255, 0, 0]};
titlestr = sprintf('PCA Problme: N=%d, d=%d, r=%d', N, d, r);
% Optimality gap (Train loss - optimum) vs. oracle calls
figure;
semilogy([infos_sd.oraclecalls], optgap_sd,'-','LineWidth',2, 'Color', line_color{1}/255); hold on;
semilogy([infos_cg.oraclecalls], optgap_cg, '-','LineWidth',2, 'Color', line_color{2}/255); hold on;
semilogy([infos_lbfgs.oraclecalls], optgap_lbfgs,'-','LineWidth',2, 'Color', line_color{3}/255); hold on;
semilogy([infos_svrg.oraclecalls], optgap_svrg,'-','LineWidth',2, 'Color', line_color{4}/255); hold on;
semilogy([infos_tr.oraclecalls], optgap_tr,'-','LineWidth',2, 'Color', line_color{5}/255); hold on;
semilogy([infos_subHtr_fix.oraclecalls], optgap_subHtr_fix,'-','LineWidth',2, 'Color', line_color{6}/255); hold on;
semilogy([infos_subHGtr_fix.oraclecalls], optgap_subHGtr_fix,'-.','LineWidth',2, 'Color', line_color{7}/255); hold on;
hold off;
ax1 = gca;
set(ax1,'FontSize',fs);
xlabel(ax1,'Oracle calls','FontName','Arial','FontSize',fs,'FontWeight','bold');
ylabel(ax1,'Optimality gap','FontName','Arial','FontSize',fs,'FontWeight','bold');
legend('RSD', 'RCG', 'RLBFGS','RSVRG', 'RTR','Sub-H-RTR', 'Sub-HG-RTR');
title(titlestr)
% Optimality gap (Train loss - optimum) vs. processing time [sec]
figure;
semilogy([infos_sd.time], optgap_sd,'-','LineWidth',2, 'Color', line_color{1}/255); hold on;
semilogy([infos_cg.time], optgap_cg, '-','LineWidth',2, 'Color', line_color{2}/255); hold on;
semilogy([infos_lbfgs.time], optgap_lbfgs,'-','LineWidth',2, 'Color', line_color{3}/255); hold on;
semilogy([infos_svrg.time], optgap_svrg,'-','LineWidth',2, 'Color', line_color{4}/255); hold on;
semilogy([infos_tr.time], optgap_tr,'-','LineWidth',2, 'Color', line_color{5}/255); hold on;
semilogy([infos_subHtr_fix.time], optgap_subHtr_fix,'-','LineWidth',2, 'Color', line_color{6}/255); hold on;
semilogy([infos_subHGtr_fix.time], optgap_subHGtr_fix,'-.','LineWidth',2, 'Color', line_color{7}/255); hold on;
hold off;
ax1 = gca;
set(ax1,'FontSize',fs);
xlabel(ax1,'Time [sec]','FontName','Arial','FontSize',fs,'FontWeight','bold');
ylabel(ax1,'Optimality gap','FontName','Arial','FontSize',fs,'FontWeight','bold');
legend('RSD', 'RCG', 'RLBFGS','RSVRG', 'RTR','Sub-H-RTR', 'Sub-HG-RTR');
title(titlestr)
end