-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluate.py
146 lines (125 loc) · 5.81 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import argparse
import os
import numpy as np
import pandas as pd
import itertools
import pickle
# Argument parser
def arguments():
parser = argparse.ArgumentParser(description='Evaluate DeepES output')
parser.add_argument('--input_dir', required=True)
parser.add_argument('--output_dir', required=True)
parser.add_argument('--rclass_list', nargs='*', required=True)
parser.add_argument('--window_size', default=10)
parser.add_argument('--threshold', default=0.99)
parser.add_argument('--duplication', default=False)
args = parser.parse_args()
return args
# Make probability matrix
def make_probability_matrix(output_dir, fasta_name, rclass_list):
probability_matrix = []
for rclass_set in rclass_list:
synthetic_probability_array = None
for rclass in rclass_set:
predicted_probability_array = np.load(f'{output_dir}/inference/{fasta_name}_{rclass}.npy')
if synthetic_probability_array is None:
synthetic_probability_array = predicted_probability_array
else:
synthetic_probability_array *= predicted_probability_array
if len(rclass_set) > 1:
synthetic_probability_array **= 1.0/len(rclass_set)
probability_matrix.append(synthetic_probability_array)
return np.array(probability_matrix)
# Pick up genes to maximize window score
def maximize_window_score(probability_matrix_in_window, window_size, duplication):
best_score = -1.0
gene_idx_within_window = None
reaction_num = len(probability_matrix_in_window)
if duplication:
score = 1.0
idx_list = []
for probability_array in probability_matrix_in_window:
idx = np.nanargmax(probability_array)
score *= probability_array[idx]
idx_list.append(idx)
score **= 1.0/reaction_num
if best_score < score:
best_score = score
gene_idx_within_window = idx_list
else:
for permutation in itertools.permutations(list(range(window_size)), reaction_num):
score = 1.0
for idx, probability_array in zip(permutation, probability_matrix_in_window):
score *= probability_array[idx]
score **= 1.0/reaction_num
if best_score < score:
best_score = score
gene_idx_within_window = permutation
return best_score, gene_idx_within_window
# Carry out window-mapping from one end od the input to the other
def window_mapping(probability_matrix, window_size, duplication):
input_length = len(probability_matrix[0])
if input_length < window_size:
print('Number of input genes < window_size')
return None
result = []
for i in range(input_length-window_size+1):
probability_matrix_in_window = probability_matrix[:,i:i+window_size]
if np.isnan(probability_matrix_in_window[0]).sum() == window_size:
result.append([np.nan, i, np.nan])
else:
best_score, gene_idx_within_window = maximize_window_score(
probability_matrix_in_window,
window_size,
duplication
)
result.append([best_score, i, gene_idx_within_window])
return result
# Get candidate genes with window score above threshold
def get_candidate_genes(window_mapping_result, threshold):
if window_mapping_result is None:
return None
result_filtered = []
for content in window_mapping_result:
window_score, window_idx, gene_idx_within_window = content
if not np.isnan(window_score) and threshold < window_score:
result_filtered.append(content)
return result_filtered
# Summarize candidate gene information
def summarize_candidate_genes(gene_table, rclass_list, window_mapping_result, threshold):
result_filtered = get_candidate_genes(window_mapping_result, threshold)
if result_filtered is None or result_filtered == []:
return None
else:
summary = []
for window_score, window_idx, gene_idx_within_window in result_filtered:
gene_idx_list = [window_idx+idx for idx in gene_idx_within_window]
gene_list = gene_table['gene_id'][gene_idx_list].to_list()
summary.append([window_score, window_idx] + gene_list)
summary_columns = ['score', 'window_idx'] + [','.join(rclass_set) for rclass_set in rclass_list]
df_summary = pd.DataFrame(summary, columns=summary_columns)
return df_summary
def main():
args = arguments()
input_dir = args.input_dir
output_dir = args.output_dir
rclass_list = args.rclass_list
window_size = args.window_size
threshold = args.threshold
duplication = args.duplication
os.makedirs(f'{output_dir}/mapping_result', exist_ok=True)
os.makedirs(f'{output_dir}/candidate_genes', exist_ok=True)
rclass_list = [rclass_set.split(',') for rclass_set in rclass_list]
for input_fname in os.listdir(input_dir):
fasta_name = input_fname.split('.')[0]
probability_matrix = make_probability_matrix(output_dir, fasta_name, rclass_list)
result = window_mapping(probability_matrix, window_size, duplication)
pickle.dump(result,open(f'{output_dir}/mapping_result/{fasta_name}.pkl', mode='wb'))
gene_table = pd.read_table(f'{output_dir}/gene_table/{fasta_name}.tsv')
df_summary = summarize_candidate_genes(gene_table, rclass_list, result, threshold)
if df_summary is None:
print(f'No candidate genes were found in {fasta_name}')
else:
df_summary.to_csv(f'{output_dir}/candidate_genes/{fasta_name}.tsv', sep='\t', header=True, index=False)
if __name__ == '__main__':
main()