forked from DataCanvasIO/Hypernets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
126 lines (101 loc) · 3.6 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from setuptools import find_packages
from setuptools import setup
home_url = 'https://github.com/DataCanvasIO/Hypernets'
def read_requirements(file_path='requirements.txt'):
import os
if not os.path.exists(file_path):
return []
with open(file_path, 'r')as f:
lines = f.readlines()
lines = [x.strip('\n').strip(' ') for x in lines]
lines = list(filter(lambda x: len(x) > 0 and not x.startswith('#'), lines))
return lines
def read_extra_requirements():
import glob
import re
extra = {}
for file_name in glob.glob('requirements-*.txt'):
key = re.search('requirements-(.+).txt', file_name).group(1)
req = read_requirements(file_name)
if req:
extra[key] = req
if extra and 'all' not in extra.keys():
extra['all'] = sorted({v for req in extra.values() for v in req})
return extra
# def read_description(file_path='README.md',
# image_root=f'{home_url}/raw/main'):
# import re
# import os
#
# def _encode_image(m):
# assert len(m.groups()) == 3
#
# pre, src, post = m.groups()
# src = src.rstrip().lstrip()
# remote_src = os.path.join(image_root, os.path.relpath(src))
# return f'{pre}{remote_src}{post}'
#
# desc = open(file_path, encoding='utf-8').read()
#
# # substitute html image
# desc = re.sub(r'(<img\s+src\s*=\s*\")(docs/source/images/[^"]+)(\")', _encode_image, desc)
#
# # substitute markdown image
# desc = re.sub(r'(\!\[.*\]\()(docs/source/images/.+)(\))', _encode_image, desc)
#
# return desc
def read_description(file_path='README.md'):
with open(file_path, encoding='utf-8') as f:
desc = f.read()
return desc
import hypernets
version = hypernets.__version__
MIN_PYTHON_VERSION = '>=3.6'
# long_description = open('README.md', encoding='utf-8').read()
long_description = read_description()
requires = read_requirements()
extras_require = read_extra_requirements()
setup(
name='hypernets',
version=version,
description='An General Automated Machine Learning Framework',
long_description=long_description,
long_description_content_type="text/markdown",
url='https://github.com/DataCanvasIO/Hypernets',
author='DataCanvas Community',
author_email='[email protected]',
license='Apache License 2.0',
install_requires=requires,
python_requires=MIN_PYTHON_VERSION,
extras_require=extras_require,
classifiers=[
'Operating System :: OS Independent',
'Intended Audience :: Developers',
'Intended Audience :: Education',
'Intended Audience :: Science/Research',
'Programming Language :: Python',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
'Programming Language :: Python :: 3.9',
'Programming Language :: Python :: 3.10',
'Topic :: Scientific/Engineering',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Topic :: Software Development',
'Topic :: Software Development :: Libraries',
'Topic :: Software Development :: Libraries :: Python Modules',
],
packages=find_packages(exclude=('docs', 'tests*')),
package_data={
'hypernets': ['tabular/datasets/*.csv', 'tabular/datasets/*.txt', 'tabular/datasets/*.gz'],
},
entry_points={
'console_scripts': [
'hyperctl = hypernets.hyperctl.cli:main',
]
},
zip_safe=False,
include_package_data=True,
)