-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
99 lines (76 loc) · 3.7 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import torch
import torch.nn.functional as F
from tqdm import tqdm
from utils.dice_score import multiclass_dice_coeff, dice_coeff
import numpy as np
import matplotlib.pyplot as plt
from pathlib import Path
@torch.inference_mode()
def evaluate(net, dataloader, device, amp):
net.eval()
num_val_batches = len(dataloader)
dice_score = 0
# iterate over the validation set
with torch.autocast(device.type if device.type != 'mps' else 'cpu', enabled=amp):
for batch in tqdm(dataloader, total=num_val_batches, desc='Validation round', unit='batch', leave=False):
image, mask_true = batch['image'], batch['mask']
# move images and labels to correct device and type
image = image.to(device=device, dtype=torch.float32, memory_format=torch.channels_last)
mask_true = mask_true.to(device=device, dtype=torch.long)
# predict the mask
mask_pred = net(image)
if net.n_classes == 1:
assert mask_true.min() >= 0 and mask_true.max() <= 1, 'True mask indices should be in [0, 1]'
mask_pred = (F.sigmoid(mask_pred) > 0.5).float()
# compute the Dice score
dice_score += dice_coeff(mask_pred, mask_true, reduce_batch_first=False)
else:
assert mask_true.min() >= 0 and mask_true.max() < net.n_classes, 'True mask indices should be in [0, n_classes['
# convert to one-hot format
mask_true = F.one_hot(mask_true, net.n_classes).permute(0, 3, 1, 2).float()
mask_pred = F.one_hot(mask_pred.argmax(dim=1), net.n_classes).permute(0, 3, 1, 2).float()
# compute the Dice score, ignoring background
dice_score += multiclass_dice_coeff(mask_pred[:, 1:], mask_true[:, 1:], reduce_batch_first=False)
net.train()
return dice_score / max(num_val_batches, 1)
def evaluate_and_visualize(model, dataloader, device, epoch, save_dir='eval_results'):
"""Evaluate model performance and save visualization results"""
model.eval()
save_dir = Path(save_dir) / f'epoch_{epoch}'
save_dir.mkdir(parents=True, exist_ok=True)
with torch.no_grad():
for batch_idx, batch in enumerate(dataloader):
# Get images and masks
images = batch['image'].to(device)
true_masks = batch['mask'].to(device)
# Generate predictions
masks_pred = model(images)
# Convert predictions
if model.n_classes == 1:
probs = torch.sigmoid(masks_pred)
masks_pred = (probs > 0.5).float()
else:
probs = torch.softmax(masks_pred, dim=1)
masks_pred = probs.argmax(dim=1)
# Save visualization for first image in batch
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
# Original image
img = images[0].cpu().numpy().transpose(1, 2, 0)
if img.shape[2] == 1: # Grayscale
axes[0].imshow(img.squeeze(), cmap='gray')
else: # RGB
axes[0].imshow(img)
axes[0].set_title('Input Image')
# True mask
axes[1].imshow(true_masks[0].cpu(), cmap='tab20')
axes[1].set_title('True Mask')
# Predicted mask
axes[2].imshow(masks_pred[0].cpu(), cmap='tab20')
axes[2].set_title('Predicted Mask')
# Save plot
plt.savefig(save_dir / f'sample_{batch_idx}.png')
plt.close()
# Only save first few samples
if batch_idx >= 4:
break
model.train()