-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopengpt_trainer.py
118 lines (95 loc) · 3.88 KB
/
opengpt_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# Import necessary libraries
import tkinter as tk
from tkinter import filedialog
import tensorflow as tf
import requests # for downloading images from the internet
import io # for reading and writing images
from keras.preprocessing.image_dataset import load_image
from opengpt_user import contains_airplane
def preprocess_image(image):
# Resize the image to match the input size of the neural network
image = cv2.resize(image, (224, 224))
# Normalize the image to improve the performance of the neural network
image = image / 255.0
image = image - 0.5
image = image * 2.0
return image
def search_for_airplane_images():
# Use a search engine to search for airplane images
query = "airplane images"
search_url = "https://www.google.com/search?q={}&tbm=isch".format(query)
response = requests.get(search_url)
# Parse the search results
results = []
for result in response.json()["items"]:
image_url = result["link"]
results.append(image_url)
return results
def create_model():
# Create a neural network using TensorFlow
model1 = tf.keras.Sequential()
model1.add(tf.keras.layers.Conv2D(32, (3, 3), input_shape=(224, 224, 3)))
model1.add(tf.keras.layers.Activation('relu'))
model1.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))
model1.add(tf.keras.layers.Conv2D(32, (3, 3)))
model1.add(tf.keras.layers.Activation('relu'))
model1.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))
model1.add(tf.keras.layers.Conv2D(64, (3, 3)))
model1.add(tf.keras.layers.Activation('relu'))
model1.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))
model1.add(tf.keras.layers.Flatten())
model1.add(tf.keras.layers.Dense(64))
model1.add(tf.keras.layers.Activation('relu'))
model1.add(tf.keras.layers.Dropout(0.5))
model1.add(tf.keras.layers.Dense(1))
model1.add(tf.keras.layers.Activation('sigmoid'))
# Compile the model
model1.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
return model1
# Create a neural network using TensorFlow
model = create_model()
# Initialize the GUI
root = tk.Tk()
root.geometry('600x400')
# Create a button for searching for airplane images on the internet
search_button = tk.Button(root, text="Search for airplane images", command=lambda: search())
search_button.pack()
# Create a label for displaying the chosen image file
file_label = tk.Label(root)
file_label.pack()
# Create radio buttons for choosing whether the image contains an airplane
yes_button = tk.Radiobutton(root, text="Yes", value=1, variable=contains_airplane)
yes_button.pack()
no_button = tk.Radiobutton(root, text="No", value=0, variable=contains_airplane)
no_button.pack()
# Create an entry field for the airplane registration
registration_field = tk.Entry(root)
registration_field.pack()
# Create a button for training the neural network
train_button = tk.Button(root, text="Train", command=lambda: train())
train_button.pack()
# Start the GUI
root.mainloop()
# Search for airplane images on the internet
def search():
# Use a search engine to find airplane images
results = search_for_airplane_images()
# Download the first image from the search results
response = requests.get(results[0])
image = tk.Image(io.BytesIO(response.content))
# Display the image in the GUI
file_label.config(image=image)
# Train the neural network using the chosen image and expected answers
def train(file_path=None):
# Load the image file
image = load_image(file_path)
# Preprocess the image
image = preprocess_image(image)
# Get the airplane registration from the entry field
registration = registration_field.get()
# Train the neural network
model.fit(image, (contains_airplane, registration), epochs=1, batch_size=1)
# Save the trained model
model.save("airplane_recognition_model.h5")