forked from PaddlePaddle/ERNIE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_classifier.py
403 lines (352 loc) · 15 KB
/
run_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Finetuning on classification tasks."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
import multiprocessing
# NOTE(paddle-dev): All of these flags should be
# set before `import paddle`. Otherwise, it would
# not take any effect.
os.environ['FLAGS_eager_delete_tensor_gb'] = '0' # enable gc
import paddle.fluid as fluid
import reader.task_reader as task_reader
from model.ernie import ErnieConfig
from finetune.classifier import create_model, evaluate, predict
from optimization import optimization
from utils.args import print_arguments, check_cuda
from utils.init import init_pretraining_params, init_checkpoint
from utils.cards import get_cards
from finetune_args import parser
args = parser.parse_args()
def main(args):
ernie_config = ErnieConfig(args.ernie_config_path)
ernie_config.print_config()
if args.use_cuda:
place = fluid.CUDAPlace(int(os.getenv('FLAGS_selected_gpus', '0')))
dev_count = fluid.core.get_cuda_device_count()
else:
place = fluid.CPUPlace()
dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
exe = fluid.Executor(place)
reader = task_reader.ClassifyReader(
vocab_path=args.vocab_path,
label_map_config=args.label_map_config,
max_seq_len=args.max_seq_len,
do_lower_case=args.do_lower_case,
in_tokens=args.in_tokens,
random_seed=args.random_seed,
tokenizer=args.tokenizer,
is_classify=args.is_classify,
is_regression=args.is_regression,
for_cn=args.for_cn,
task_id=args.task_id)
if not (args.do_train or args.do_val or args.do_test):
raise ValueError("For args `do_train`, `do_val` and `do_test`, at "
"least one of them must be True.")
if args.do_test:
assert args.test_save is not None
startup_prog = fluid.Program()
if args.random_seed is not None:
startup_prog.random_seed = args.random_seed
if args.predict_batch_size == None:
args.predict_batch_size = args.batch_size
if args.do_train:
train_data_generator = reader.data_generator(
input_file=args.train_set,
batch_size=args.batch_size,
epoch=args.epoch,
dev_count=dev_count,
shuffle=True,
phase="train")
num_train_examples = reader.get_num_examples(args.train_set)
if args.in_tokens:
max_train_steps = args.epoch * num_train_examples // (
args.batch_size // args.max_seq_len) // dev_count
else:
max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count
warmup_steps = int(max_train_steps * args.warmup_proportion)
print("Device count: %d" % dev_count)
print("Num train examples: %d" % num_train_examples)
print("Max train steps: %d" % max_train_steps)
print("Num warmup steps: %d" % warmup_steps)
train_program = fluid.Program()
if args.random_seed is not None and args.enable_ce:
train_program.random_seed = args.random_seed
with fluid.program_guard(train_program, startup_prog):
with fluid.unique_name.guard():
train_pyreader, graph_vars = create_model(
args,
pyreader_name='train_reader',
ernie_config=ernie_config,
is_classify=args.is_classify,
is_regression=args.is_regression)
scheduled_lr, loss_scaling = optimization(
loss=graph_vars["loss"],
warmup_steps=warmup_steps,
num_train_steps=max_train_steps,
learning_rate=args.learning_rate,
train_program=train_program,
startup_prog=startup_prog,
weight_decay=args.weight_decay,
scheduler=args.lr_scheduler,
use_fp16=args.use_fp16)
if args.verbose:
if args.in_tokens:
lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
program=train_program,
batch_size=args.batch_size // args.max_seq_len)
else:
lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
program=train_program, batch_size=args.batch_size)
print("Theoretical memory usage in training: %.3f - %.3f %s" %
(lower_mem, upper_mem, unit))
if args.do_val or args.do_test:
test_prog = fluid.Program()
with fluid.program_guard(test_prog, startup_prog):
with fluid.unique_name.guard():
test_pyreader, graph_vars = create_model(
args,
pyreader_name='test_reader',
ernie_config=ernie_config,
is_classify=args.is_classify,
is_regression=args.is_regression)
test_prog = test_prog.clone(for_test=True)
nccl2_num_trainers = 1
nccl2_trainer_id = 0
exe.run(startup_prog)
if args.do_train:
if args.init_checkpoint and args.init_pretraining_params:
print(
"WARNING: args 'init_checkpoint' and 'init_pretraining_params' "
"both are set! Only arg 'init_checkpoint' is made valid.")
if args.init_checkpoint:
init_checkpoint(
exe,
args.init_checkpoint,
main_program=startup_prog,
use_fp16=args.use_fp16)
elif args.init_pretraining_params:
init_pretraining_params(
exe,
args.init_pretraining_params,
main_program=startup_prog,
use_fp16=args.use_fp16)
elif args.do_val or args.do_test:
if not args.init_checkpoint:
raise ValueError("args 'init_checkpoint' should be set if"
"only doing validation or testing!")
init_checkpoint(
exe,
args.init_checkpoint,
main_program=startup_prog,
use_fp16=args.use_fp16)
if args.do_train:
exec_strategy = fluid.ExecutionStrategy()
if args.use_fast_executor:
exec_strategy.use_experimental_executor = True
exec_strategy.num_threads = dev_count
exec_strategy.num_iteration_per_drop_scope = args.num_iteration_per_drop_scope
train_exe = fluid.ParallelExecutor(
use_cuda=args.use_cuda,
loss_name=graph_vars["loss"].name,
exec_strategy=exec_strategy,
main_program=train_program,
num_trainers=nccl2_num_trainers,
trainer_id=nccl2_trainer_id)
train_pyreader.decorate_tensor_provider(train_data_generator)
else:
train_exe = None
test_exe = exe
if args.do_val or args.do_test:
if args.use_multi_gpu_test:
test_exe = fluid.ParallelExecutor(
use_cuda=args.use_cuda,
main_program=test_prog,
share_vars_from=train_exe)
if args.do_train:
train_pyreader.start()
steps = 0
if warmup_steps > 0:
graph_vars["learning_rate"] = scheduled_lr
ce_info = []
time_begin = time.time()
last_epoch = 0
current_epoch = 0
while True:
try:
steps += 1
if steps % args.skip_steps != 0:
train_exe.run(fetch_list=[])
else:
outputs = evaluate(
train_exe,
train_program,
train_pyreader,
graph_vars,
"train",
metric=args.metric,
is_classify=args.is_classify,
is_regression=args.is_regression)
if args.verbose:
verbose = "train pyreader queue size: %d, " % train_pyreader.queue.size(
)
verbose += "learning rate: %f" % (
outputs["learning_rate"]
if warmup_steps > 0 else args.learning_rate)
print(verbose)
current_example, current_epoch = reader.get_train_progress()
time_end = time.time()
used_time = time_end - time_begin
if args.is_classify:
print(
"epoch: %d, progress: %d/%d, step: %d, ave loss: %f, "
"ave acc: %f, speed: %f steps/s" %
(current_epoch, current_example, num_train_examples,
steps, outputs["loss"], outputs["accuracy"],
args.skip_steps / used_time))
ce_info.append(
[outputs["loss"], outputs["accuracy"], used_time])
if args.is_regression:
print(
"epoch: %d, progress: %d/%d, step: %d, ave loss: %f, "
" speed: %f steps/s" %
(current_epoch, current_example, num_train_examples,
steps, outputs["loss"],
args.skip_steps / used_time))
time_begin = time.time()
if steps % args.save_steps == 0:
save_path = os.path.join(args.checkpoints,
"step_" + str(steps))
fluid.io.save_persistables(exe, save_path, train_program)
if steps % args.validation_steps == 0 or last_epoch != current_epoch:
# evaluate dev set
if args.do_val:
evaluate_wrapper(args, reader, exe, test_prog,
test_pyreader, graph_vars,
current_epoch, steps)
if args.do_test:
predict_wrapper(args, reader, exe, test_prog,
test_pyreader, graph_vars,
current_epoch, steps)
if last_epoch != current_epoch:
last_epoch = current_epoch
except fluid.core.EOFException:
save_path = os.path.join(args.checkpoints, "step_" + str(steps))
fluid.io.save_persistables(exe, save_path, train_program)
train_pyreader.reset()
break
if args.enable_ce:
card_num = get_cards()
ce_loss = 0
ce_acc = 0
ce_time = 0
try:
ce_loss = ce_info[-2][0]
ce_acc = ce_info[-2][1]
ce_time = ce_info[-2][2]
except:
print("ce info error")
print("kpis\ttrain_duration_card%s\t%s" % (card_num, ce_time))
print("kpis\ttrain_loss_card%s\t%f" % (card_num, ce_loss))
print("kpis\ttrain_acc_card%s\t%f" % (card_num, ce_acc))
# final eval on dev set
if args.do_val:
evaluate_wrapper(args, reader, exe, test_prog, test_pyreader,
graph_vars, current_epoch, steps)
# final eval on test set
if args.do_test:
predict_wrapper(args, reader, exe, test_prog, test_pyreader, graph_vars,
current_epoch, steps)
# final eval on dianostic, hack for glue-ax
if args.diagnostic:
test_pyreader.decorate_tensor_provider(
reader.data_generator(
args.diagnostic,
batch_size=args.batch_size,
epoch=1,
dev_count=1,
shuffle=False))
print("Final diagnostic")
qids, preds, probs = predict(
test_exe,
test_prog,
test_pyreader,
graph_vars,
is_classify=args.is_classify,
is_regression=args.is_regression)
assert len(qids) == len(preds), '{} v.s. {}'.format(
len(qids), len(preds))
with open(args.diagnostic_save, 'w') as f:
for id, s, p in zip(qids, preds, probs):
f.write('{}\t{}\t{}\n'.format(id, s, p))
print("Done final diagnostic, saving to {}".format(
args.diagnostic_save))
def evaluate_wrapper(args, reader, exe, test_prog, test_pyreader, graph_vars,
epoch, steps):
# evaluate dev set
for ds in args.dev_set.split(','):
test_pyreader.decorate_tensor_provider(
reader.data_generator(
ds,
batch_size=args.predict_batch_size,
epoch=1,
dev_count=1,
shuffle=False))
print("validation result of dataset {}:".format(ds))
evaluate_info = evaluate(
exe,
test_prog,
test_pyreader,
graph_vars,
"dev",
metric=args.metric,
is_classify=args.is_classify,
is_regression=args.is_regression)
print(evaluate_info + ', file: {}, epoch: {}, steps: {}'.format(
ds, epoch, steps))
def predict_wrapper(args, reader, exe, test_prog, test_pyreader, graph_vars,
epoch, steps):
test_sets = args.test_set.split(',')
save_dirs = args.test_save.split(',')
assert len(test_sets) == len(save_dirs)
for test_f, save_f in zip(test_sets, save_dirs):
test_pyreader.decorate_tensor_provider(
reader.data_generator(
test_f,
batch_size=args.predict_batch_size,
epoch=1,
dev_count=1,
shuffle=False))
save_path = save_f + '.' + str(epoch) + '.' + str(steps)
print("testing {}, save to {}".format(test_f, save_path))
qids, preds, probs = predict(
exe,
test_prog,
test_pyreader,
graph_vars,
is_classify=args.is_classify,
is_regression=args.is_regression)
save_dir = os.path.dirname(save_path)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
with open(save_path, 'w') as f:
for id, s, p in zip(qids, preds, probs):
f.write('{}\t{}\t{}\n'.format(id, s, p))
if __name__ == '__main__':
print_arguments(args)
check_cuda(args.use_cuda)
main(args)