-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathquery_qdrant.py
60 lines (45 loc) · 1.57 KB
/
query_qdrant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from openai import OpenAI
from conf.constants import *
from qdrant_client import QdrantClient
import argparse
# ---
# create an embedding using openai
def get_embedding(openai_client, text, model="text-embedding-ada-002"):
text = text.replace("\n", " ")
resp = openai_client.embeddings.create(input = [text], model=model)
return resp.data[0].embedding
# query the vector store
def query_qdrant(openai_client, qdrant_client, query, collection_name, top_k=5):
embedded_query = get_embedding(openai_client=openai_client, text=query)
query_results = qdrant_client.search(
collection_name=collection_name,
query_vector=(embedded_query),
limit=top_k,
)
return query_results
# ---
# OpenAI Client
openai_client = OpenAI()
# Vector DB
qdrant_client = QdrantClient(
QDRANT_URL,
api_key=QDRANT_KEY,
)
# arguments
parser = argparse.ArgumentParser(description='Extract PDF pages')
parser.add_argument('-c', '--collection', help='The target collection name', required=True)
parser.add_argument('-k', '--topk', help='Num top k', required=False, default=5)
args = parser.parse_args()
# exceute query
query_results = query_qdrant(
openai_client=openai_client,
qdrant_client=qdrant_client,
query=input("Prompt:"),
collection_name=args.collection,
top_k=args.topk
)
# list results oreder by score
print("Found N matches: ", len(query_results))
for i, article in enumerate(query_results):
#print(article)
print(f'{i + 1}. {article.payload["metadata"]["page_number"]} (Score: {round(article.score, 3)})')