-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
143 lines (102 loc) · 4.23 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import math
import torch
import torch.nn as nn
import torchvision.models as models
from typing import Tuple
class Encoder(nn.Module):
def __init__(self, word_emb_dim: int):
super().__init__()
self.word_emb_dim = word_emb_dim
# freeze encoder parameters
encoder = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)
for param in encoder.parameters():
param.requires_grad_(False)
# remove the last layer
modules = list(encoder.children())[:-1]
self.encoder = nn.Sequential(*modules)
# final layer
self.fc = nn.Linear(encoder.fc.in_features, self.word_emb_dim)
def forward(self, images: torch.Tensor) -> torch.Tensor:
h = self.encoder(images)
h = h.reshape(h.shape[0], -1)
# h: (batch, 2048)
h = self.fc(h)
# h: (batch, img_emb_dim)
return h
class DecoderLSTM(nn.Module):
def __init__(self,
word_emb_dim: int,
hidden_dim: int,
num_layers: int,
vocab_size: int):
super().__init__()
self.word_emb_dim = word_emb_dim
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.vocab_size = vocab_size
self.hidden_0 = nn.Parameter(torch.zeros(self.num_layers, 1, self.hidden_dim, requires_grad=True))
self.cell_0 = nn.Parameter(torch.zeros(self.num_layers, 1, self.hidden_dim, requires_grad=True))
self.decoder = nn.LSTM(input_size=self.word_emb_dim,
hidden_size=self.hidden_dim,
num_layers=self.num_layers)
self.fc = nn.Sequential(
nn.Linear(self.hidden_dim, self.vocab_size),
nn.LogSoftmax(dim=2)
)
def forward(self,
decoder_input: torch.Tensor,
hidden: torch.Tensor,
cell: torch.Tensor) -> Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
decoder_output, (hidden, cell) = self.decoder(decoder_input, (hidden, cell))
# decoder_output: (length, batch, hidden_dim)
decoder_output = self.fc(decoder_output)
# decoder_output: (length, batch, vocab_size)
return decoder_output, (hidden, cell)
class PositionalEncoding(nn.Module):
def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 128):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
pe = torch.zeros(max_len, 1, d_model)
pe[:, 0, 0::2] = torch.sin(position * div_term)
pe[:, 0, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Arguments:
x: Tensor, shape ``[seq_len, batch_size, embedding_dim]``
"""
x = x + self.pe[:x.size(0)]
return self.dropout(x)
class DecoderGPT1(nn.Module):
def __init__(self,
word_emb_dim: int,
nhead: int,
hidden_dim: int,
num_layers: int,
vocab_size: int):
super().__init__()
self.word_emb_dim = word_emb_dim
self.nhead = nhead
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.vocab_size = vocab_size
self.pe = PositionalEncoding(self.word_emb_dim)
decoder_layer = nn.TransformerEncoderLayer(
d_model=self.word_emb_dim,
nhead=self.nhead,
dim_feedforward=self.hidden_dim
)
self.decoder = nn.TransformerEncoder(decoder_layer, num_layers=self.num_layers)
self.fc = nn.Sequential(
nn.Linear(self.word_emb_dim, self.vocab_size),
nn.LogSoftmax(dim=2)
)
def forward(self, decoder_input: torch.Tensor):
src = self.pe(decoder_input)
mask = nn.Transformer.generate_square_subsequent_mask(src.shape[0], device=src.device)
decoder_output = self.decoder(src, mask=mask)
decoder_output = self.fc(decoder_output)
# decoder_output: (length, batch, vocab_size)
return decoder_output