-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathvis_prediction_gt.py
121 lines (94 loc) · 4.63 KB
/
vis_prediction_gt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import argparse
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import tqdm
import torch
import math
from data.dataset_front import semantic_dataset
from data.const import NUM_CLASSES
from model_front import get_model
from postprocess.vectorize import vectorize
def vis_vector(model, val_loader, angle_class):
# model.eval()
car_img = Image.open('pics/car.png')
colors_plt = ['r', 'b', 'g']
with torch.no_grad():
for batchi, (imgs, trans, rots, intrins, post_trans, post_rots, lidar_data, lidar_mask, car_trans, yaw_pitch_roll, segmentation_gt, instance_gt, direction_gt, final_depth_map_bin, final_depth_map_bin_enc, projected_depth, vectors,rec) in enumerate(val_loader):
for si in range(1):
plt.figure(figsize=(4, 2))
plt.xlim(0, 90)
plt.ylim(-15, 15)
plt.axis('off')
for vector in vectors:
pts, pts_num, line_type = vector['pts'], vector['pts_num'], vector['type']
pts = pts[:pts_num].cpu().detach().numpy()
pts = pts[0, :]
x = np.array([pt[0] for pt in pts])
y = np.array([pt[1] for pt in pts])
plt.plot(x, y, color=colors_plt[line_type])
plt.imshow(car_img, extent=[-1.5, 1.5, -1.2, 1.2])
print("rec: ", rec['data']['CAM_FRONT'])
map_path = 'results/'+args.saveroot + \
f'/eval_{batchi:04}_'+str(rec['data']['CAM_FRONT'])+'_gt.jpg'
print('saving', map_path)
plt.savefig(map_path, bbox_inches='tight', dpi=400)
plt.close()
def main(args):
data_conf = {
'num_channels': NUM_CLASSES + 1,
'image_size': args.image_size,
'depth_image_size': args.depth_image_size,
'xbound': args.xbound,
'ybound': args.ybound,
'zbound': args.zbound,
'dbound': args.dbound,
'thickness': args.thickness,
'angle_class': args.angle_class,
}
train_loader, val_loader = semantic_dataset(
args.version, args.dataroot, data_conf, args.bsz, args.nworkers, depth_downsample_factor=args.depth_downsample_factor, depth_sup=args.depth_sup, use_depth_enc=args.use_depth_enc, use_depth_enc_bin=args.use_depth_enc_bin, add_depth_channel=args.add_depth_channel,use_lidar_10=args.use_lidar_10, visual=True)
model = None
vis_vector(model, val_loader, args.angle_class)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# nuScenes config
parser.add_argument('--dataroot', type=str,
default='/media/hao/HaoData/dataset/nuScenes/')
parser.add_argument('--version', type=str, default='v1.0-trainval',
choices=['v1.0-trainval', 'v1.0-mini'])
# model config
parser.add_argument("--model", type=str, default='SuperFusion')
# training config
parser.add_argument("--bsz", type=int, default=1)
parser.add_argument("--nworkers", type=int, default=10)
parser.add_argument('--modelf', type=str, default=None)
# data config
parser.add_argument("--thickness", type=int, default=5)
parser.add_argument("--depth_downsample_factor", type=int, default=4)
parser.add_argument("--image_size", nargs=2, type=int, default=[256, 704])
parser.add_argument("--depth_image_size", nargs=2, type=int, default=[256, 704])
parser.add_argument("--xbound", nargs=3, type=float,
default=[-90.0, 90.0, 0.15])
parser.add_argument("--ybound", nargs=3, type=float,
default=[-15.0, 15.0, 0.15])
parser.add_argument("--zbound", nargs=3, type=float,
default=[-10.0, 10.0, 20.0])
parser.add_argument("--dbound", nargs=3, type=float,
default=[2.0, 90.0, 1.0])
# embedding config
parser.add_argument('--instance_seg', action='store_true')
parser.add_argument("--embedding_dim", type=int, default=16)
# direction config
parser.add_argument('--direction_pred', action='store_true')
parser.add_argument('--angle_class', type=int, default=36)
parser.add_argument('--saveroot', type=str,
default='SuperFusion')
parser.add_argument('--depth_sup', action='store_true')
parser.add_argument('--use_depth_enc', action='store_true')
parser.add_argument('--pretrained', action='store_true')
parser.add_argument('--use_depth_enc_bin', action='store_true')
parser.add_argument('--add_depth_channel', action='store_true')
parser.add_argument('--use_lidar_10', action='store_true')
args = parser.parse_args()
main(args)