-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathevaluate_json_split.py
182 lines (148 loc) · 8.66 KB
/
evaluate_json_split.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import torch
import tqdm
from evaluation.dataset import HDMapNetEvalDataset
from evaluation.chamfer_distance import semantic_mask_chamfer_dist_cum
from evaluation.AP import instance_mask_AP
from evaluation.iou import get_batch_iou
SAMPLED_RECALLS = torch.linspace(0.1, 1, 10)
THRESHOLDS = [0.2, 0.5, 1.0]
def get_val_info(args):
data_conf = {
'xbound': args.xbound,
'ybound': args.ybound,
'thickness': args.thickness,
}
dataset = HDMapNetEvalDataset(
args.version, args.dataroot, args.eval_set, args.result_path, data_conf)
data_loader = torch.utils.data.DataLoader(
dataset, batch_size=args.bsz, shuffle=False, drop_last=False)
total_CD1 = torch.zeros(args.max_channel).cuda()
total_CD2 = torch.zeros(args.max_channel).cuda()
total_CD_num1 = torch.zeros(args.max_channel).cuda()
total_CD_num2 = torch.zeros(args.max_channel).cuda()
total_intersect = torch.zeros(args.max_channel).cuda()
total_union = torch.zeros(args.max_channel).cuda()
AP_matrix = torch.zeros((args.max_channel, len(THRESHOLDS))).cuda()
AP_count_matrix = torch.zeros((args.max_channel, len(THRESHOLDS))).cuda()
total_CD1_30_60 = torch.zeros(args.max_channel).cuda()
total_CD2_30_60 = torch.zeros(args.max_channel).cuda()
total_CD_num1_30_60 = torch.zeros(args.max_channel).cuda()
total_CD_num2_30_60 = torch.zeros(args.max_channel).cuda()
total_intersect_30_60 = torch.zeros(args.max_channel).cuda()
total_union_30_60 = torch.zeros(args.max_channel).cuda()
AP_matrix_30_60 = torch.zeros((args.max_channel, len(THRESHOLDS))).cuda()
AP_count_matrix_30_60 = torch.zeros((args.max_channel, len(THRESHOLDS))).cuda()
total_CD1_60_90 = torch.zeros(args.max_channel).cuda()
total_CD2_60_90 = torch.zeros(args.max_channel).cuda()
total_CD_num1_60_90 = torch.zeros(args.max_channel).cuda()
total_CD_num2_60_90 = torch.zeros(args.max_channel).cuda()
total_intersect_60_90 = torch.zeros(args.max_channel).cuda()
total_union_60_90 = torch.zeros(args.max_channel).cuda()
AP_matrix_60_90 = torch.zeros((args.max_channel, len(THRESHOLDS))).cuda()
AP_count_matrix_60_90 = torch.zeros((args.max_channel, len(THRESHOLDS))).cuda()
print('running eval...')
for pred_map, confidence_level, gt_map in tqdm.tqdm(data_loader):
# iou
pred_map = pred_map.cuda() # torch.Size([4, 3, 200, 400])
confidence_level = confidence_level.cuda()
gt_map = gt_map.cuda()
split = int(pred_map.shape[3]/3)
#intersect, union = get_batch_iou(pred_map[:,:,:,:split], gt_map[:,:,:,:split])
CD1, CD2, num1, num2 = semantic_mask_chamfer_dist_cum(
pred_map[:,:,:,:split], gt_map[:,:,:,:split], args.xbound[2], args.ybound[2], threshold=args.CD_threshold)
instance_mask_AP(AP_matrix, AP_count_matrix, pred_map[:,:,:,:split], gt_map[:,:,:,:split], args.xbound[2], args.ybound[2],
confidence_level, THRESHOLDS, sampled_recalls=SAMPLED_RECALLS, bidirectional=args.bidirectional, threshold_iou=args.threshold_iou)
#total_intersect += intersect.cuda()
#total_union += union.cuda()
total_CD1 += CD1
total_CD2 += CD2
total_CD_num1 += num1
total_CD_num2 += num2
#intersect, union = get_batch_iou(pred_map[:,:,:,split:2*split], gt_map[:,:,:,split:2*split])
CD1, CD2, num1, num2 = semantic_mask_chamfer_dist_cum(
pred_map[:,:,:,split:2*split], gt_map[:,:,:,split:2*split], args.xbound[2], args.ybound[2], threshold=args.CD_threshold)
instance_mask_AP(AP_matrix_30_60, AP_count_matrix_30_60, pred_map[:,:,:,split:2*split], gt_map[:,:,:,split:2*split], args.xbound[2], args.ybound[2],
confidence_level, THRESHOLDS, sampled_recalls=SAMPLED_RECALLS, bidirectional=args.bidirectional, threshold_iou=args.threshold_iou)
#total_intersect_30_60 += intersect.cuda()
#total_union_30_60 += union.cuda()
total_CD1_30_60 += CD1
total_CD2_30_60 += CD2
total_CD_num1_30_60 += num1
total_CD_num2_30_60 += num2
#intersect, union = get_batch_iou(pred_map[:,:,:,2*split:], gt_map[:,:,:,2*split:])
CD1, CD2, num1, num2 = semantic_mask_chamfer_dist_cum(
pred_map[:,:,:,2*split:], gt_map[:,:,:,2*split:], args.xbound[2], args.ybound[2], threshold=args.CD_threshold)
instance_mask_AP(AP_matrix_60_90, AP_count_matrix_60_90, pred_map[:,:,:,2*split:], gt_map[:,:,:,2*split:], args.xbound[2], args.ybound[2],
confidence_level, THRESHOLDS, sampled_recalls=SAMPLED_RECALLS, bidirectional=args.bidirectional, threshold_iou=args.threshold_iou)
#total_intersect_60_90 += intersect.cuda()
#total_union_60_90 += union.cuda()
total_CD1_60_90 += CD1
total_CD2_60_90 += CD2
total_CD_num1_60_90 += num1
total_CD_num2_60_90 += num2
CD_pred_0_30 = total_CD1 / total_CD_num1
CD_label_0_30 = total_CD2 / total_CD_num2
CD_0_30 = (total_CD1 + total_CD2) / (total_CD_num1 + total_CD_num2)
CD_pred_0_30[CD_pred_0_30 > args.CD_threshold] = args.CD_threshold
CD_label_0_30[CD_label_0_30 > args.CD_threshold] = args.CD_threshold
CD_0_30[CD_0_30 > args.CD_threshold] = args.CD_threshold
CD_pred_30_60 = total_CD1_30_60 / total_CD_num1_30_60
CD_label_30_60 = total_CD2_30_60 / total_CD_num2_30_60
CD_30_60 = (total_CD1_30_60 + total_CD2_30_60) / (total_CD_num1_30_60 + total_CD_num2_30_60)
CD_pred_30_60[CD_pred_30_60 > args.CD_threshold] = args.CD_threshold
CD_label_30_60[CD_label_30_60 > args.CD_threshold] = args.CD_threshold
CD_30_60[CD_30_60 > args.CD_threshold] = args.CD_threshold
CD_pred_60_90 = total_CD1_60_90 / total_CD_num1_60_90
CD_label_60_90 = total_CD2_60_90 / total_CD_num2_60_90
CD_60_90 = (total_CD1_60_90 + total_CD2_60_90) / (total_CD_num1_60_90 + total_CD_num2_60_90)
CD_pred_60_90[CD_pred_60_90 > args.CD_threshold] = args.CD_threshold
CD_label_60_90[CD_label_60_90 > args.CD_threshold] = args.CD_threshold
CD_60_90[CD_60_90 > args.CD_threshold] = args.CD_threshold
CD_pred = (total_CD1 + total_CD1_30_60 + total_CD1_60_90) / (total_CD_num1 + total_CD_num1_30_60 + total_CD_num1_60_90)
CD_label = (total_CD2 + total_CD2_30_60 + total_CD2_60_90) / (total_CD_num2 + total_CD_num2_30_60 + total_CD_num2_60_90)
CD = (total_CD1 + total_CD2+ total_CD1_30_60 + total_CD2_30_60+ total_CD1_60_90+ total_CD2_60_90) / (total_CD_num1 +total_CD_num2 + total_CD_num1_30_60+ total_CD_num2_30_60 + total_CD_num1_60_90+ total_CD_num2_60_90)
AP = (AP_matrix+AP_matrix_30_60+AP_matrix_60_90) / (AP_count_matrix+AP_count_matrix_30_60+AP_count_matrix_60_90)
return {
#'iou_0_30': total_intersect / total_union,
'CD_pred_0_30': CD_pred_0_30,
'CD_label_0_30': CD_label_0_30,
'CD_0_30': CD_0_30,
'Average_precision_0_30': AP_matrix / AP_count_matrix,
#'iou_30_60': total_intersect_30_60 / total_union_30_60,
'CD_pred_30_60': CD_pred_30_60,
'CD_label_30_60': CD_label_30_60,
'CD_30_60': CD_30_60,
'Average_precision_30_60': AP_matrix_30_60 / AP_count_matrix_30_60,
#'iou_60_90': total_intersect_60_90 / total_union_60_90,
'CD_pred_60_90': CD_pred_60_90,
'CD_label_60_90': CD_label_60_90,
'CD_60_90': CD_60_90,
'Average_precision_60_90': AP_matrix_60_90 / AP_count_matrix_60_90,
'CD_pred': CD_pred,
'CD_label': CD_label,
'CD': CD,
'AP': AP,
}
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(
description='Evaluate nuScenes local HD Map Construction Results.')
parser.add_argument('--result_path', type=str)
parser.add_argument('--dataroot', type=str,
default='/path/to/nuScenes/')
parser.add_argument('--bsz', type=int, default=4)
parser.add_argument('--version', type=str, default='v1.0-trainval',
choices=['v1.0-trainval', 'v1.0-mini'])
parser.add_argument('--eval_set', type=str, default='val',
choices=['train', 'val', 'test', 'mini_train', 'mini_val'])
parser.add_argument('--thickness', type=int, default=5)
parser.add_argument('--max_channel', type=int, default=3)
parser.add_argument('--CD_threshold', type=int, default=5)
parser.add_argument("--xbound", nargs=3, type=float,
default=[-90.0, 90.0, 0.15])
parser.add_argument("--ybound", nargs=3, type=float,
default=[-15.0, 15.0, 0.15])
parser.add_argument('--bidirectional', action='store_true')
parser.add_argument('--threshold_iou', type=float, default=0.1)
args = parser.parse_args()
print(get_val_info(args))