-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_eegnet.py
93 lines (85 loc) · 3.39 KB
/
run_eegnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import json
import wandb
import numpy as np
from pathlib import Path
from data.utils import *
from eegnet.torch_eegnet import *
from torch.utils.data import ConcatDataset
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def load_checkpoint(savepath, device):
checkpoint = torch.load(savepath)
epoch = checkpoint['epoch']
config = checkpoint['config']
model = EEGNet(
checkpoint['sampling_rate'],
checkpoint['N'],
checkpoint['L'],
checkpoint['C'],
checkpoint['F1'],
checkpoint['D'],
checkpoint['F2'],
checkpoint['dropout_rate'],
)
model.load_state_dict(checkpoint['model_state_dict'])
model.to(device)
return epoch, config, model
print("Initialize")
with open("eegnet/eegnet_conf.json",'r') as fconf:
conf = json.load(fconf)
SAMPLING_RATE = {'bciciv':128, 'vepess':512}
conf['SAMPLING_RATE'] = SAMPLING_RATE[conf['DATA']]
NB_CLASSES = {'bciciv':4, 'vepess':2}
conf['NB_CLASSES'] = NB_CLASSES[conf['DATA']]
SIGNAL_LENGTH = {'bciciv':448, 'vepess':512}
conf['SIGNAL_LENGTH'] = SIGNAL_LENGTH[conf['DATA']]
NB_CHANS = {'bciciv':25, 'vepess':70}
conf['NB_CHANS'] = NB_CHANS[conf['DATA']]
if "checkpoint" in conf:
savepath = Path(conf["checkpoint"])
epoch, cp_conf, model = load_checkpoint(savepath, device)
wandb.init(project="amal_diffusion",entity="amal_2223",config=cp_conf)
else:
wandb.init(project="amal_diffusion",entity="amal_2223",config=conf)
random_seed = np.random.choice(9999)
config = wandb.config
config.SEED = random_seed
torch.manual_seed(config.SEED)
np.random.seed(config.SEED)
torch.backends.cudnn.deterministic = True
wandb.define_metric("train accuracy", summary="mean")
wandb.define_metric("val accuracy", summary="mean")
model = EEGNet(config.SAMPLING_RATE, config.NB_CLASSES, config.SIGNAL_LENGTH, config.NB_CHANS)
model.to(device)
optimizer = torch.optim.Adam(model.parameters(), config.LEARNING_RATE)
wandb.watch(model, log="all")
print("Loading data")
gen_train_ds = GenDataset(config.DATA, config.GEN_RUN)
if config.DATA == 'vepess':
src_train_ds = VepessDataset(config.N_SUBJECTS,True,partition='train')
val_ds = VepessDataset(config.N_SUBJECTS,True,partition='val')
test_ds = VepessDataset(config.N_SUBJECTS,True,partition='test')
else:
src_train_ds = BCICIV2aDataset(config.N_SUBJECTS,True,partition='train')
val_ds = BCICIV2aDataset(config.N_SUBJECTS,True,partition='val')
test_ds = BCICIV2aDataset(config.N_SUBJECTS,True,partition='test')
val_dl = DataLoader(val_ds,batch_size=config.EVAL_BATCH_SIZE,shuffle=False)
test_dl = DataLoader(test_ds,batch_size=config.EVAL_BATCH_SIZE,shuffle=False)
print("Training")
if config.SETTING == 'DEFAULT':
train_ds = src_train_ds
train_dl = DataLoader(train_ds,batch_size=config.TRAIN_BATCH_SIZE,shuffle=True)
run(model, device, train_dl, val_dl, optimizer, config, wandb)
elif config.SETTING == 'PRETRAIN':
train_ds = gen_train_ds
train_dl = DataLoader(train_ds,batch_size=config.TRAIN_BATCH_SIZE,shuffle=True)
run(model, device, train_dl, val_dl, optimizer, config, wandb)
train_ds = src_train_ds
train_dl = DataLoader(train_ds,batch_size=config.TRAIN_BATCH_SIZE,shuffle=True)
run(model, device, train_dl, val_dl, optimizer, config, wandb)
elif config.SETTING == 'DOUBLE':
train_ds = ConcatDataset([src_train_ds, gen_train_ds])
train_dl = DataLoader(train_ds,batch_size=config.TRAIN_BATCH_SIZE,shuffle=True)
run(model, device, train_dl, val_dl, optimizer, config, wandb)
else:
print("SETTING must be DEFAULT, PRETRAIN or DOUBLE.")
exit(1)