forked from goodfeli/adversarial
-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathdatasets.py
152 lines (122 loc) · 5.28 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import logging
import numpy
from theano.compat.six.moves import xrange
from pylearn2.datasets import cache, dense_design_matrix
from pylearn2.datasets.cifar10 import CIFAR10
from pylearn2.expr.preprocessing import global_contrast_normalize
from pylearn2.format.target_format import OneHotFormatter
from pylearn2.utils import contains_nan, serial, string_utils
_logger = logging.getLogger(__name__)
class CIFAR10OneHot(CIFAR10):
def __init__(self, which_set, onehot_dtype='uint8',
center=False, rescale=False, gcn=None,
start=None, stop=None, axes=('b', 0, 1, 'c'),
toronto_prepro=False, preprocessor=None):
"""Modified version of the CIFAR10 constructor which creates Y
as one-hot vectors rather than simple indexes. This is super
hacky. Sorry, Guido.."""
# note: there is no such thing as the cifar10 validation set;
# pylearn1 defined one but really it should be user-configurable
# (as it is here)
self.axes = axes
# we define here:
dtype = 'uint8'
ntrain = 50000
nvalid = 0 # artefact, we won't use it
ntest = 10000
# we also expose the following details:
self.img_shape = (3, 32, 32)
self.img_size = numpy.prod(self.img_shape)
self.n_classes = 10
self.label_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck']
# prepare loading
fnames = ['data_batch_%i' % i for i in range(1, 6)]
datasets = {}
datapath = os.path.join(
string_utils.preprocess('${PYLEARN2_DATA_PATH}'),
'cifar10', 'cifar-10-batches-py')
for name in fnames + ['test_batch']:
fname = os.path.join(datapath, name)
if not os.path.exists(fname):
raise IOError(fname + " was not found. You probably need to "
"download the CIFAR-10 dataset by using the "
"download script in "
"pylearn2/scripts/datasets/download_cifar10.sh "
"or manually from "
"http://www.cs.utoronto.ca/~kriz/cifar.html")
datasets[name] = cache.datasetCache.cache_file(fname)
lenx = numpy.ceil((ntrain + nvalid) / 10000.) * 10000
x = numpy.zeros((lenx, self.img_size), dtype=dtype)
y = numpy.zeros((lenx, 1), dtype=dtype)
# load train data
nloaded = 0
for i, fname in enumerate(fnames):
_logger.info('loading file %s' % datasets[fname])
data = serial.load(datasets[fname])
x[i * 10000:(i + 1) * 10000, :] = data['data']
y[i * 10000:(i + 1) * 10000, 0] = data['labels']
nloaded += 10000
if nloaded >= ntrain + nvalid + ntest:
break
# load test data
_logger.info('loading file %s' % datasets['test_batch'])
data = serial.load(datasets['test_batch'])
# process this data
Xs = {'train': x[0:ntrain],
'test': data['data'][0:ntest]}
Ys = {'train': y[0:ntrain],
'test': data['labels'][0:ntest]}
X = numpy.cast['float32'](Xs[which_set])
y = Ys[which_set]
if isinstance(y, list):
y = numpy.asarray(y).astype(dtype)
if which_set == 'test':
assert y.shape[0] == 10000
y = y.reshape((y.shape[0], 1))
formatter = OneHotFormatter(self.n_classes, dtype=onehot_dtype)
y = formatter.format(y, mode='concatenate')
if center:
X -= 127.5
self.center = center
if rescale:
X /= 127.5
self.rescale = rescale
if toronto_prepro:
assert not center
assert not gcn
X = X / 255.
if which_set == 'test':
other = CIFAR10(which_set='train')
oX = other.X
oX /= 255.
X = X - oX.mean(axis=0)
else:
X = X - X.mean(axis=0)
self.toronto_prepro = toronto_prepro
self.gcn = gcn
if gcn is not None:
gcn = float(gcn)
X = global_contrast_normalize(X, scale=gcn)
if start is not None:
# This needs to come after the prepro so that it doesn't
# change the pixel means computed above for toronto_prepro
assert start >= 0
assert stop > start
assert stop <= X.shape[0]
X = X[start:stop, :]
y = y[start:stop, :]
assert X.shape[0] == y.shape[0]
if which_set == 'test':
assert X.shape[0] == 10000
view_converter = dense_design_matrix.DefaultViewConverter((32, 32, 3),
axes)
super(CIFAR10, self).__init__(X=X, y=y, view_converter=view_converter,
)#y_labels=self.n_classes)
assert not contains_nan(self.X)
if preprocessor:
preprocessor.apply(self)
# Another hack: rename 'targets' to match model expectations
space, (X_source, y_source) = self.data_specs
self.data_specs = (space, (X_source, 'condition'))