forked from goodfeli/adversarial
-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy path__init__.py
955 lines (788 loc) · 36.7 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
"""
Code for "Generative Adversarial Networks". Please cite the ArXiv paper in
any published research work making use of this code.
"""
import functools
wraps = functools.wraps
import itertools
import numpy
np = numpy
import theano
import warnings
from theano.compat import OrderedDict
from theano.sandbox.rng_mrg import MRG_RandomStreams
from theano import tensor as T
from pylearn2.space import VectorSpace
from pylearn2.costs.cost import Cost
from pylearn2.costs.cost import DefaultDataSpecsMixin
from pylearn2.models.mlp import Layer
from pylearn2.models.mlp import Linear
from pylearn2.models import Model
from pylearn2.space import CompositeSpace
from pylearn2.train_extensions import TrainExtension
from pylearn2.utils import block_gradient
from pylearn2.utils import safe_zip
from pylearn2.utils import serial
from pylearn2.utils import sharedX
class AdversaryPair(Model):
def __init__(self, generator, discriminator, inferer=None,
inference_monitoring_batch_size=128,
monitor_generator=True,
monitor_discriminator=True,
monitor_inference=True,
shrink_d = 0.):
Model.__init__(self)
self.__dict__.update(locals())
del self.self
def __setstate__(self, state):
self.__dict__.update(state)
if 'inferer' not in state:
self.inferer = None
if 'inference_monitoring_batch_size' not in state:
self.inference_monitoring_batch_size = 128 # TODO: HACK
if 'monitor_generator' not in state:
self.monitor_generator = True
if 'monitor_discriminator' not in state:
self.monitor_discriminator = True
if 'monitor_inference' not in state:
self.monitor_inference = True
def get_params(self):
p = self.generator.get_params() + self.discriminator.get_params()
if hasattr(self, 'inferer') and self.inferer is not None:
p += self.inferer.get_params()
return p
def get_input_space(self):
return self.discriminator.get_input_space()
def get_weights_topo(self):
return self.discriminator.get_weights_topo()
def get_weights(self):
return self.discriminator.get_weights()
def get_weights_format(self):
return self.discriminator.get_weights_format()
def get_weights_view_shape(self):
return self.discriminator.get_weights_view_shape()
def get_monitoring_channels(self, data):
rval = OrderedDict()
g_ch = self.generator.get_monitoring_channels(data)
d_ch = self.discriminator.get_monitoring_channels((data, None))
samples = self.generator.sample(100)
d_samp_ch = self.discriminator.get_monitoring_channels((samples, None))
i_ch = OrderedDict()
if self.inferer is not None:
batch_size = self.inference_monitoring_batch_size
sample, noise, _ = self.generator.sample_and_noise(batch_size)
i_ch.update(self.inferer.get_monitoring_channels((sample, noise)))
if self.monitor_generator:
for key in g_ch:
rval['gen_' + key] = g_ch[key]
if self.monitor_discriminator:
for key in d_ch:
rval['dis_on_data_' + key] = d_samp_ch[key]
for key in d_ch:
rval['dis_on_samp_' + key] = d_ch[key]
if self.monitor_inference:
for key in i_ch:
rval['inf_' + key] = i_ch[key]
return rval
def get_monitoring_data_specs(self):
space = self.discriminator.get_input_space()
source = self.discriminator.get_input_source()
return (space, source)
def _modify_updates(self, updates):
self.generator.modify_updates(updates)
self.discriminator.modify_updates(updates)
if self.shrink_d != 0.:
for param in self.discriminator.get_params():
if param in updates:
updates[param] = self.shrink_d * updates[param]
if self.inferer is not None:
self.inferer.modify_updates(updates)
def get_lr_scalers(self):
rval = self.generator.get_lr_scalers()
rval.update(self.discriminator.get_lr_scalers())
return rval
def add_layers(mlp, pretrained, start_layer=0):
model = serial.load(pretrained)
pretrained_layers = model.generator.mlp.layers
assert pretrained_layers[start_layer].get_input_space() == mlp.layers[-1].get_output_space()
mlp.layers.extend(pretrained_layers[start_layer:])
return mlp
class Generator(Model):
def __init__(self, mlp, noise = "gaussian", monitor_ll = False, ll_n_samples = 100, ll_sigma = 0.2):
Model.__init__(self)
self.__dict__.update(locals())
del self.self
self.theano_rng = MRG_RandomStreams(2014 * 5 + 27)
def get_input_space(self):
return self.mlp.get_input_space()
def dropout_fprop(self, sample_data, default_input_include_prob=1., default_input_scale=1., all_g_layers=False):
if all_g_layers:
rval = self.mlp.dropout_fprop(sample_data, default_input_include_prob=default_input_include_prob, default_input_scale=default_input_scale, return_all=all_g_layers)
other_layers, rval = rval[:-1], rval[-1]
else:
rval = self.mlp.dropout_fprop(sample_data, default_input_include_prob=default_input_include_prob, default_input_scale=default_input_scale)
other_layers = None
return rval, other_layers
def sample_and_noise(self, num_samples, default_input_include_prob=1., default_input_scale=1., all_g_layers=False):
n = self.mlp.get_input_space().get_total_dimension()
noise = self.get_noise((num_samples, n))
formatted_noise = VectorSpace(n).format_as(noise, self.mlp.get_input_space())
rval, other_layers = self.dropout_fprop(formatted_noise,
default_input_include_prob=default_input_include_prob,
default_input_scale=default_input_scale,
all_g_layers=all_g_layers)
return rval, formatted_noise, other_layers
def sample(self, num_samples, default_input_include_prob=1., default_input_scale=1.):
sample, _, _ = self.sample_and_noise(num_samples, default_input_include_prob, default_input_scale)
return sample
def get_monitoring_channels(self, data):
if data is None:
m = 100
else:
m = data.shape[0]
n = self.mlp.get_input_space().get_total_dimension()
noise = self.get_noise((m, n))
rval = OrderedDict()
try:
rval.update(self.mlp.get_monitoring_channels((noise, None)))
except Exception:
warnings.warn("something went wrong with generator.mlp's monitoring channels")
if self.monitor_ll:
rval['ll'] = T.cast(self.ll(data, self.ll_n_samples, self.ll_sigma),
theano.config.floatX).mean()
rval['nll'] = -rval['ll']
return rval
def get_noise(self, size):
# Allow just requesting batch size
if isinstance(size, int):
size = (size, self.get_input_space().get_total_dimension())
if not hasattr(self, 'noise'):
self.noise = "gaussian"
if self.noise == "uniform":
return self.theano_rng.uniform(low=-np.sqrt(3), high=np.sqrt(3), size=size, dtype='float32')
elif self.noise == "gaussian":
return self.theano_rng.normal(size=size, dtype='float32')
elif self.noise == "spherical":
noise = self.theano_rng.normal(size=size, dtype='float32')
noise = noise / T.maximum(1e-7, T.sqrt(T.sqr(noise).sum(axis=1))).dimshuffle(0, 'x')
return noise
else:
raise NotImplementedError(self.noise)
def get_params(self):
return self.mlp.get_params()
def get_output_space(self):
return self.mlp.get_output_space()
def ll(self, data, n_samples, sigma):
samples = self.sample(n_samples)
output_space = self.mlp.get_output_space()
if 'Conv2D' in str(output_space):
samples = output_space.convert(samples, output_space.axes, ('b', 0, 1, 'c'))
samples = samples.flatten(2)
data = output_space.convert(data, output_space.axes, ('b', 0, 1, 'c'))
data = data.flatten(2)
parzen = theano_parzen(data, samples, sigma)
return parzen
def _modify_updates(self, updates):
self.mlp.modify_updates(updates)
def get_lr_scalers(self):
return self.mlp.get_lr_scalers()
def __setstate__(self, state):
self.__dict__.update(state)
if 'monitor_ll' not in state:
self.monitor_ll = False
class AdversaryCost2(DefaultDataSpecsMixin, Cost):
"""
"""
# Supplies own labels, don't get them from the dataset
supervised = False
def __init__(self, scale_grads=1, target_scale=.1,
discriminator_default_input_include_prob = 1.,
discriminator_input_include_probs=None,
discriminator_default_input_scale=1.,
discriminator_input_scales=None,
generator_default_input_include_prob = 1.,
generator_default_input_scale=1.,
inference_default_input_include_prob=None,
inference_input_include_probs=None,
inference_default_input_scale=1.,
inference_input_scales=None,
init_now_train_generator=True,
ever_train_discriminator=True,
ever_train_generator=True,
ever_train_inference=True,
no_drop_in_d_for_g=False,
alternate_g = False,
infer_layer=None,
noise_both = 0.,
blend_obj = False,
minimax_coeff = 1.,
zurich_coeff = 1.):
self.__dict__.update(locals())
del self.self
# These allow you to dynamically switch off training parts.
# If the corresponding ever_train_* is False, these have
# no effect.
self.now_train_generator = sharedX(init_now_train_generator)
self.now_train_discriminator = sharedX(numpy.array(1., dtype='float32'))
self.now_train_inference = sharedX(numpy.array(1., dtype='float32'))
def expr(self, model, data, **kwargs):
S, d_obj, g_obj, i_obj = self.get_samples_and_objectives(model, data)
l = []
# This stops stuff from ever getting computed if we're not training
# it.
if self.ever_train_discriminator:
l.append(d_obj)
if self.ever_train_generator:
l.append(g_obj)
if self.ever_train_inference:
l.append(i_obj)
return sum(l)
def get_samples_and_objectives(self, model, data):
space, sources = self.get_data_specs(model)
space.validate(data)
assert isinstance(model, AdversaryPair)
g = model.generator
d = model.discriminator
# Note: this assumes data is design matrix
X = data
m = data.shape[space.get_batch_axis()]
y1 = T.alloc(1, m, 1)
y0 = T.alloc(0, m, 1)
# NOTE: if this changes to optionally use dropout, change the inference
# code below to use a non-dropped-out version.
S, z, other_layers = g.sample_and_noise(m, default_input_include_prob=self.generator_default_input_include_prob, default_input_scale=self.generator_default_input_scale, all_g_layers=(self.infer_layer is not None))
if self.noise_both != 0.:
rng = MRG_RandomStreams(2014 / 6 + 2)
S = S + rng.normal(size=S.shape, dtype=S.dtype) * self.noise_both
X = X + rng.normal(size=X.shape, dtype=S.dtype) * self.noise_both
y_hat1 = d.dropout_fprop(X, self.discriminator_default_input_include_prob,
self.discriminator_input_include_probs,
self.discriminator_default_input_scale,
self.discriminator_input_scales)
y_hat0 = d.dropout_fprop(S, self.discriminator_default_input_include_prob,
self.discriminator_input_include_probs,
self.discriminator_default_input_scale,
self.discriminator_input_scales)
d_obj = 0.5 * (d.layers[-1].cost(y1, y_hat1) + d.layers[-1].cost(y0, y_hat0))
if self.no_drop_in_d_for_g:
y_hat0_no_drop = d.dropout_fprop(S)
g_obj = d.layers[-1].cost(y1, y_hat0_no_drop)
else:
g_obj = d.layers[-1].cost(y1, y_hat0)
if self.blend_obj:
g_obj = (self.zurich_coeff * g_obj - self.minimax_coeff * d_obj) / (self.zurich_coeff + self.minimax_coeff)
if model.inferer is not None:
# Change this if we ever switch to using dropout in the
# construction of S.
S_nograd = block_gradient(S) # Redundant as long as we have custom get_gradients
pred = model.inferer.dropout_fprop(S_nograd, self.inference_default_input_include_prob,
self.inference_input_include_probs,
self.inference_default_input_scale,
self.inference_input_scales)
if self.infer_layer is None:
target = z
else:
target = other_layers[self.infer_layer]
i_obj = model.inferer.layers[-1].cost(target, pred)
else:
i_obj = 0
return S, d_obj, g_obj, i_obj
def get_gradients(self, model, data, **kwargs):
space, sources = self.get_data_specs(model)
space.validate(data)
assert isinstance(model, AdversaryPair)
g = model.generator
d = model.discriminator
S, d_obj, g_obj, i_obj = self.get_samples_and_objectives(model, data)
g_params = g.get_params()
d_params = d.get_params()
for param in g_params:
assert param not in d_params
for param in d_params:
assert param not in g_params
d_grads = T.grad(d_obj, d_params)
g_grads = T.grad(g_obj, g_params)
if self.scale_grads:
S_grad = T.grad(g_obj, S)
scale = T.maximum(1., self.target_scale / T.sqrt(T.sqr(S_grad).sum()))
g_grads = [g_grad * scale for g_grad in g_grads]
rval = OrderedDict()
zeros = itertools.repeat(theano.tensor.constant(0., dtype='float32'))
if self.ever_train_discriminator:
rval.update(OrderedDict(safe_zip(d_params, [self.now_train_discriminator * dg for dg in d_grads])))
else:
rval.update(OrderedDict(zip(d_params, zeros)))
if self.ever_train_generator:
rval.update(OrderedDict(safe_zip(g_params, [self.now_train_generator * gg for gg in g_grads])))
else:
rval.update(OrderedDict(zip(g_params, zeros)))
if self.ever_train_inference and model.inferer is not None:
i_params = model.inferer.get_params()
i_grads = T.grad(i_obj, i_params)
rval.update(OrderedDict(safe_zip(i_params, [self.now_train_inference * ig for ig in i_grads])))
elif model.inferer is not None:
rval.update(OrderedDict(model.inferer.get_params(), zeros))
updates = OrderedDict()
# Two d steps for every g step
if self.alternate_g:
updates[self.now_train_generator] = 1. - self.now_train_generator
return rval, updates
def get_monitoring_channels(self, model, data, **kwargs):
rval = OrderedDict()
m = data.shape[0]
g = model.generator
d = model.discriminator
y_hat = d.fprop(data)
rval['false_negatives'] = T.cast((y_hat < 0.5).mean(), 'float32')
samples = g.sample(m)
y_hat = d.fprop(samples)
rval['false_positives'] = T.cast((y_hat > 0.5).mean(), 'float32')
# y = T.alloc(0., m, 1)
cost = d.cost_from_X((samples, y_hat))
sample_grad = T.grad(-cost, samples)
rval['sample_grad_norm'] = T.sqrt(T.sqr(sample_grad).sum())
_S, d_obj, g_obj, i_obj = self.get_samples_and_objectives(model, data)
if model.monitor_inference and i_obj != 0:
rval['objective_i'] = i_obj
if model.monitor_discriminator:
rval['objective_d'] = d_obj
if model.monitor_generator:
rval['objective_g'] = g_obj
rval['now_train_generator'] = self.now_train_generator
return rval
def recapitate_discriminator(pair_path, new_head):
pair = serial.load(pair_path)
d = pair.discriminator
del d.layers[-1]
d.add_layers([new_head])
return d
def theano_parzen(data, mu, sigma):
"""
Credit: Yann N. Dauphin
"""
x = data
a = ( x.dimshuffle(0, 'x', 1) - mu.dimshuffle('x', 0, 1) ) / sigma
E = log_mean_exp(-0.5*(a**2).sum(2))
Z = mu.shape[1] * T.log(sigma * numpy.sqrt(numpy.pi * 2))
#return theano.function([x], E - Z)
return E - Z
def log_mean_exp(a):
"""
Credit: Yann N. Dauphin
"""
max_ = a.max(1)
return max_ + T.log(T.exp(a - max_.dimshuffle(0, 'x')).mean(1))
class Sum(Layer):
"""
Monitoring channels are hardcoded for C01B batches
"""
def __init__(self, layer_name):
Model.__init__(self)
self.__dict__.update(locals())
del self.self
self._params = []
def set_input_space(self, space):
self.input_space = space
assert isinstance(space, CompositeSpace)
self.output_space = space.components[0]
def fprop(self, state_below):
rval = state_below[0]
for i in xrange(1, len(state_below)):
rval = rval + state_below[i]
rval.came_from_sum = True
return rval
@functools.wraps(Layer.get_layer_monitoring_channels)
def get_layer_monitoring_channels(self, state_below=None,
state=None, targets=None):
rval = OrderedDict()
if state is None:
state = self.fprop(state_below)
vars_and_prefixes = [(state, '')]
for var, prefix in vars_and_prefixes:
if not hasattr(var, 'ndim') or var.ndim != 4:
print "expected 4D tensor, got "
print var
print type(var)
if isinstance(var, tuple):
print "tuple length: ", len(var)
assert False
v_max = var.max(axis=(1, 2, 3))
v_min = var.min(axis=(1, 2, 3))
v_mean = var.mean(axis=(1, 2, 3))
v_range = v_max - v_min
# max_x.mean_u is "the mean over *u*nits of the max over
# e*x*amples" The x and u are included in the name because
# otherwise its hard to remember which axis is which when reading
# the monitor I use inner.outer rather than outer_of_inner or
# something like that because I want mean_x.* to appear next to
# each other in the alphabetical list, as these are commonly
# plotted together
for key, val in [('max_x.max_u', v_max.max()),
('max_x.mean_u', v_max.mean()),
('max_x.min_u', v_max.min()),
('min_x.max_u', v_min.max()),
('min_x.mean_u', v_min.mean()),
('min_x.min_u', v_min.min()),
('range_x.max_u', v_range.max()),
('range_x.mean_u', v_range.mean()),
('range_x.min_u', v_range.min()),
('mean_x.max_u', v_mean.max()),
('mean_x.mean_u', v_mean.mean()),
('mean_x.min_u', v_mean.min())]:
rval[prefix+key] = val
return rval
def marginals(dataset):
return dataset.X.mean(axis=0)
class ActivateGenerator(TrainExtension):
def __init__(self, active_after, value=1.):
self.__dict__.update(locals())
del self.self
self.cur_epoch = 0
def on_monitor(self, model, dataset, algorithm):
if self.cur_epoch == self.active_after:
algorithm.cost.now_train_generator.set_value(np.array(self.value, dtype='float32'))
self.cur_epoch += 1
class NoiseCat(Layer):
def __init__(self, new_dim, std, layer_name):
Layer.__init__(self)
self.__dict__.update(locals())
del self.self
self._params = []
def set_input_space(self, space):
assert isinstance(space, VectorSpace)
self.input_space = space
self.output_space = VectorSpace(space.dim + self.new_dim)
self.theano_rng = MRG_RandomStreams(self.mlp.rng.randint(2 ** 16))
def fprop(self, state):
noise = self.theano_rng.normal(std=self.std, avg=0., size=(state.shape[0], self.new_dim),
dtype=state.dtype)
return T.concatenate((state, noise), axis=1)
class ThresholdedAdversaryCost(DefaultDataSpecsMixin, Cost):
"""
"""
# Supplies own labels, don't get them from the dataset
supervised = False
def __init__(self, scale_grads=1, target_scale=.1,
discriminator_default_input_include_prob = 1.,
discriminator_input_include_probs=None,
discriminator_default_input_scale=1.,
discriminator_input_scales=None,
generator_default_input_include_prob = 1.,
generator_default_input_scale=1.,
inference_default_input_include_prob=None,
inference_input_include_probs=None,
inference_default_input_scale=1.,
inference_input_scales=None,
init_now_train_generator=True,
ever_train_discriminator=True,
ever_train_generator=True,
ever_train_inference=True,
no_drop_in_d_for_g=False,
alternate_g = False,
infer_layer=None,
noise_both = 0.):
self.__dict__.update(locals())
del self.self
# These allow you to dynamically switch off training parts.
# If the corresponding ever_train_* is False, these have
# no effect.
self.now_train_generator = sharedX(init_now_train_generator)
self.now_train_discriminator = sharedX(numpy.array(1., dtype='float32'))
self.now_train_inference = sharedX(numpy.array(1., dtype='float32'))
def expr(self, model, data, **kwargs):
S, d_obj, g_obj, i_obj = self.get_samples_and_objectives(model, data)
l = []
# This stops stuff from ever getting computed if we're not training
# it.
if self.ever_train_discriminator:
l.append(d_obj)
if self.ever_train_generator:
l.append(g_obj)
if self.ever_train_inference:
l.append(i_obj)
return sum(l)
def get_samples_and_objectives(self, model, data):
space, sources = self.get_data_specs(model)
space.validate(data)
assert isinstance(model, AdversaryPair)
g = model.generator
d = model.discriminator
# Note: this assumes data is design matrix
X = data
m = data.shape[space.get_batch_axis()]
y1 = T.alloc(1, m, 1)
y0 = T.alloc(0, m, 1)
# NOTE: if this changes to optionally use dropout, change the inference
# code below to use a non-dropped-out version.
S, z, other_layers = g.sample_and_noise(m, default_input_include_prob=self.generator_default_input_include_prob, default_input_scale=self.generator_default_input_scale, all_g_layers=(self.infer_layer is not None))
if self.noise_both != 0.:
rng = MRG_RandomStreams(2014 / 6 + 2)
S = S + rng.normal(size=S.shape, dtype=S.dtype) * self.noise_both
X = X + rng.normal(size=X.shape, dtype=S.dtype) * self.noise_both
y_hat1 = d.dropout_fprop(X, self.discriminator_default_input_include_prob,
self.discriminator_input_include_probs,
self.discriminator_default_input_scale,
self.discriminator_input_scales)
y_hat0 = d.dropout_fprop(S, self.discriminator_default_input_include_prob,
self.discriminator_input_include_probs,
self.discriminator_default_input_scale,
self.discriminator_input_scales)
d_obj = 0.5 * (d.layers[-1].cost(y1, y_hat1) + d.layers[-1].cost(y0, y_hat0))
if self.no_drop_in_d_for_g:
y_hat0_no_drop = d.dropout_fprop(S)
g_cost_mat = d.layers[-1].cost_matrix(y1, y_hat0_no_drop)
else:
g_cost_mat = d.layers[-1].cost_matrix(y1, y_hat0)
assert g_cost_mat.ndim == 2
assert y_hat0.ndim == 2
mask = y_hat0 < 0.5
masked_cost = g_cost_mat * mask
g_obj = masked_cost.mean()
if model.inferer is not None:
# Change this if we ever switch to using dropout in the
# construction of S.
S_nograd = block_gradient(S) # Redundant as long as we have custom get_gradients
pred = model.inferer.dropout_fprop(S_nograd, self.inference_default_input_include_prob,
self.inference_input_include_probs,
self.inference_default_input_scale,
self.inference_input_scales)
if self.infer_layer is None:
target = z
else:
target = other_layers[self.infer_layer]
i_obj = model.inferer.layers[-1].cost(target, pred)
else:
i_obj = 0
return S, d_obj, g_obj, i_obj
def get_gradients(self, model, data, **kwargs):
space, sources = self.get_data_specs(model)
space.validate(data)
assert isinstance(model, AdversaryPair)
g = model.generator
d = model.discriminator
S, d_obj, g_obj, i_obj = self.get_samples_and_objectives(model, data)
g_params = g.get_params()
d_params = d.get_params()
for param in g_params:
assert param not in d_params
for param in d_params:
assert param not in g_params
d_grads = T.grad(d_obj, d_params)
g_grads = T.grad(g_obj, g_params)
if self.scale_grads:
S_grad = T.grad(g_obj, S)
scale = T.maximum(1., self.target_scale / T.sqrt(T.sqr(S_grad).sum()))
g_grads = [g_grad * scale for g_grad in g_grads]
rval = OrderedDict()
zeros = itertools.repeat(theano.tensor.constant(0., dtype='float32'))
if self.ever_train_discriminator:
rval.update(OrderedDict(safe_zip(d_params, [self.now_train_discriminator * dg for dg in d_grads])))
else:
rval.update(OrderedDict(zip(d_params, zeros)))
if self.ever_train_generator:
rval.update(OrderedDict(safe_zip(g_params, [self.now_train_generator * gg for gg in g_grads])))
else:
rval.update(OrderedDict(zip(g_params, zeros)))
if self.ever_train_inference and model.inferer is not None:
i_params = model.inferer.get_params()
i_grads = T.grad(i_obj, i_params)
rval.update(OrderedDict(safe_zip(i_params, [self.now_train_inference * ig for ig in i_grads])))
elif model.inferer is not None:
rval.update(OrderedDict(model.inferer.get_params(), zeros))
updates = OrderedDict()
# Two d steps for every g step
if self.alternate_g:
updates[self.now_train_generator] = 1. - self.now_train_generator
return rval, updates
def get_monitoring_channels(self, model, data, **kwargs):
rval = OrderedDict()
m = data.shape[0]
g = model.generator
d = model.discriminator
y_hat = d.fprop(data)
rval['false_negatives'] = T.cast((y_hat < 0.5).mean(), 'float32')
samples = g.sample(m)
y_hat = d.fprop(samples)
rval['false_positives'] = T.cast((y_hat > 0.5).mean(), 'float32')
# y = T.alloc(0., m, 1)
cost = d.cost_from_X((samples, y_hat))
sample_grad = T.grad(-cost, samples)
rval['sample_grad_norm'] = T.sqrt(T.sqr(sample_grad).sum())
_S, d_obj, g_obj, i_obj = self.get_samples_and_objectives(model, data)
if model.monitor_inference and i_obj != 0:
rval['objective_i'] = i_obj
if model.monitor_discriminator:
rval['objective_d'] = d_obj
if model.monitor_generator:
rval['objective_g'] = g_obj
rval['now_train_generator'] = self.now_train_generator
return rval
class LazyAdversaryCost(DefaultDataSpecsMixin, Cost):
"""
"""
# Supplies own labels, don't get them from the dataset
supervised = False
def __init__(self, scale_grads=1, target_scale=.1,
discriminator_default_input_include_prob = 1.,
discriminator_input_include_probs=None,
discriminator_default_input_scale=1.,
discriminator_input_scales=None,
generator_default_input_include_prob = 1.,
generator_default_input_scale=1.,
inference_default_input_include_prob=None,
inference_input_include_probs=None,
inference_default_input_scale=1.,
inference_input_scales=None,
init_now_train_generator=True,
ever_train_discriminator=True,
ever_train_generator=True,
ever_train_inference=True,
no_drop_in_d_for_g=False,
alternate_g = False,
infer_layer=None,
noise_both = 0.,
g_eps = 0.,
d_eps =0.):
self.__dict__.update(locals())
del self.self
# These allow you to dynamically switch off training parts.
# If the corresponding ever_train_* is False, these have
# no effect.
self.now_train_generator = sharedX(init_now_train_generator)
self.now_train_discriminator = sharedX(numpy.array(1., dtype='float32'))
self.now_train_inference = sharedX(numpy.array(1., dtype='float32'))
def expr(self, model, data, **kwargs):
S, d_obj, g_obj, i_obj = self.get_samples_and_objectives(model, data)
l = []
# This stops stuff from ever getting computed if we're not training
# it.
if self.ever_train_discriminator:
l.append(d_obj)
if self.ever_train_generator:
l.append(g_obj)
if self.ever_train_inference:
l.append(i_obj)
return sum(l)
def get_samples_and_objectives(self, model, data):
space, sources = self.get_data_specs(model)
space.validate(data)
assert isinstance(model, AdversaryPair)
g = model.generator
d = model.discriminator
# Note: this assumes data is design matrix
X = data
m = data.shape[space.get_batch_axis()]
y1 = T.alloc(1, m, 1)
y0 = T.alloc(0, m, 1)
# NOTE: if this changes to optionally use dropout, change the inference
# code below to use a non-dropped-out version.
S, z, other_layers = g.sample_and_noise(m, default_input_include_prob=self.generator_default_input_include_prob, default_input_scale=self.generator_default_input_scale, all_g_layers=(self.infer_layer is not None))
if self.noise_both != 0.:
rng = MRG_RandomStreams(2014 / 6 + 2)
S = S + rng.normal(size=S.shape, dtype=S.dtype) * self.noise_both
X = X + rng.normal(size=X.shape, dtype=S.dtype) * self.noise_both
y_hat1 = d.dropout_fprop(X, self.discriminator_default_input_include_prob,
self.discriminator_input_include_probs,
self.discriminator_default_input_scale,
self.discriminator_input_scales)
y_hat0 = d.dropout_fprop(S, self.discriminator_default_input_include_prob,
self.discriminator_input_include_probs,
self.discriminator_default_input_scale,
self.discriminator_input_scales)
# d_obj = 0.5 * (d.layers[-1].cost(y1, y_hat1) + d.layers[-1].cost(y0, y_hat0))
pos_mask = y_hat1 < .5 + self.d_eps
neg_mask = y_hat0 > .5 - self.d_eps
pos_cost_matrix = d.layers[-1].cost_matrix(y1, y_hat1)
neg_cost_matrix = d.layers[-1].cost_matrix(y0, y_hat0)
pos_cost = (pos_mask * pos_cost_matrix).mean()
neg_cost = (neg_mask * neg_cost_matrix).mean()
d_obj = 0.5 * (pos_cost + neg_cost)
if self.no_drop_in_d_for_g:
y_hat0_no_drop = d.dropout_fprop(S)
g_cost_mat = d.layers[-1].cost_matrix(y1, y_hat0_no_drop)
else:
g_cost_mat = d.layers[-1].cost_matrix(y1, y_hat0)
assert g_cost_mat.ndim == 2
assert y_hat0.ndim == 2
mask = y_hat0 < 0.5 + self.g_eps
masked_cost = g_cost_mat * mask
g_obj = masked_cost.mean()
if model.inferer is not None:
# Change this if we ever switch to using dropout in the
# construction of S.
S_nograd = block_gradient(S) # Redundant as long as we have custom get_gradients
pred = model.inferer.dropout_fprop(S_nograd, self.inference_default_input_include_prob,
self.inference_input_include_probs,
self.inference_default_input_scale,
self.inference_input_scales)
if self.infer_layer is None:
target = z
else:
target = other_layers[self.infer_layer]
i_obj = model.inferer.layers[-1].cost(target, pred)
else:
i_obj = 0
return S, d_obj, g_obj, i_obj
def get_gradients(self, model, data, **kwargs):
space, sources = self.get_data_specs(model)
space.validate(data)
assert isinstance(model, AdversaryPair)
g = model.generator
d = model.discriminator
S, d_obj, g_obj, i_obj = self.get_samples_and_objectives(model, data)
g_params = g.get_params()
d_params = d.get_params()
for param in g_params:
assert param not in d_params
for param in d_params:
assert param not in g_params
d_grads = T.grad(d_obj, d_params)
g_grads = T.grad(g_obj, g_params)
if self.scale_grads:
S_grad = T.grad(g_obj, S)
scale = T.maximum(1., self.target_scale / T.sqrt(T.sqr(S_grad).sum()))
g_grads = [g_grad * scale for g_grad in g_grads]
rval = OrderedDict()
zeros = itertools.repeat(theano.tensor.constant(0., dtype='float32'))
if self.ever_train_discriminator:
rval.update(OrderedDict(safe_zip(d_params, [self.now_train_discriminator * dg for dg in d_grads])))
else:
rval.update(OrderedDict(zip(d_params, zeros)))
if self.ever_train_generator:
rval.update(OrderedDict(safe_zip(g_params, [self.now_train_generator * gg for gg in g_grads])))
else:
rval.update(OrderedDict(zip(g_params, zeros)))
if self.ever_train_inference and model.inferer is not None:
i_params = model.inferer.get_params()
i_grads = T.grad(i_obj, i_params)
rval.update(OrderedDict(safe_zip(i_params, [self.now_train_inference * ig for ig in i_grads])))
elif model.inferer is not None:
rval.update(OrderedDict(model.inferer.get_params(), zeros))
updates = OrderedDict()
# Two d steps for every g step
if self.alternate_g:
updates[self.now_train_generator] = 1. - self.now_train_generator
return rval, updates
def get_monitoring_channels(self, model, data, **kwargs):
rval = OrderedDict()
m = data.shape[0]
g = model.generator
d = model.discriminator
y_hat = d.fprop(data)
rval['false_negatives'] = T.cast((y_hat < 0.5).mean(), 'float32')
samples = g.sample(m)
y_hat = d.fprop(samples)
rval['false_positives'] = T.cast((y_hat > 0.5).mean(), 'float32')
# y = T.alloc(0., m, 1)
cost = d.cost_from_X((samples, y_hat))
sample_grad = T.grad(-cost, samples)
rval['sample_grad_norm'] = T.sqrt(T.sqr(sample_grad).sum())
_S, d_obj, g_obj, i_obj = self.get_samples_and_objectives(model, data)
if model.monitor_inference and i_obj != 0:
rval['objective_i'] = i_obj
if model.monitor_discriminator:
rval['objective_d'] = d_obj
if model.monitor_generator:
rval['objective_g'] = g_obj
rval['now_train_generator'] = self.now_train_generator
return rval