-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
87 lines (72 loc) · 2.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import torch
import wandb
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from dataset import TextDataset
from model import *
import time
from transformers import logging
logging.set_verbosity_warning()
# 加载训练数据
bert_dir = "bert/"
train_dataset = TextDataset()
label_list = {'Love':0, 'Joy':1, 'Anxiety':2, 'Sorrow':3, 'Expect':4, 'Hate':5, 'Surprise':6, 'Anger':7}
train_data_len = len(train_dataset)
print(f"训练集长度:{train_data_len}")
# 创建网络模型
my_model = BertTextModel_last_layer()
my_model=my_model.cuda()
def myeval(pred, tar):
pred_zero = torch.zeros_like(pred)
pred_zero[pred > 0.5] = 1
judge_n=pred_zero.cuda()==tar.cuda()
error_num=0
for i in judge_n:
if False in i:
error_num+=1
return error_num,len(judge_n),1-error_num/len(judge_n)
# 优化器
learning_rate = 1e-4
#optimizer = torch.optim.SGD(my_model.parameters(), lr=learning_rate)
# Adam 参数betas=(0.9, 0.99)
optimizer = torch.optim.Adam(my_model.parameters(), lr=learning_rate, betas=(0.9, 0.99))
# 总共的训练步数
total_train_step = 0
# 总共的测试步数
total_test_step = 0
step = 0
epoch = 1000
# my_model.load_state_dict(torch.load("model/epoch_3"))
writer = SummaryWriter("logs")
test = wandb.init(project="taskNLP", resume="allow")
test.config.update(dict(epoch=50, lr=learning_rate, batch_size=32))
train_loss_his = []
train_totalaccuracy_his = []
test_totalloss_his = []
test_totalaccuracy_his = []
start_time = time.time()
loss_f=nn.MultiLabelSoftMarginLoss(reduction="mean")
train_data_loader = DataLoader(dataset=train_dataset, batch_size=16, shuffle=True)
for i in range(epoch):
print(f"-------第{i}轮训练开始-------")
my_model.train()
besterr=10000
allerr=0
for step, batch_data in enumerate(train_data_loader):
# writer.add_images("tarin_data", imgs, total_train_step)
output = my_model(batch_data)
loss = loss_f(batch_data['label'].cuda(),output)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step = total_train_step + 1
train_loss_his.append(loss)
writer.add_scalar("train_loss", loss, total_train_step)
errornum,knum,acc = myeval(output, batch_data['label_id'])
writer.add_scalar("acc_loss", acc, total_train_step)
print("epoch:",i,"batch:",step,"loss:",loss.data,"acc:",acc)
test.log({'trainloss': loss.data, 'epoch': i,"step":step,"acc":acc})
allerr+=errornum
if allerr<besterr:
besterr=allerr
torch.save(my_model.state_dict(), "model/epoch_%d.pth" % i)