-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmain_fl_mr.py
140 lines (126 loc) · 5.31 KB
/
main_fl_mr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Python version: 3.6
import copy
import numpy as np
import torch
import os
from utils.options import args_parser
from models.recon_Update import LocalUpdate
from models.Fed import FedAvg
from models.test import evaluator_normal as evaluator
from data.mri_data import SliceData, DataTransform
from data.subsample import create_mask_for_mask_type
from models.unet_model import UnetModel
from tensorboardX import SummaryWriter
import pathlib
if __name__ == '__main__':
os.environ["HDF5_USE_FILE_LOCKING"] = 'FALSE'
# parse args
args = args_parser()
path_dict = {'B': pathlib.Path('Dataset dir B'),
'F': pathlib.Path('Dataset dir F'),
'H': pathlib.Path('Dataset dir H'),
'I': pathlib.Path('Dataset dir I')}
rate_dict = {'B': 1.0,'F': 1.0,'H': 1.0, 'I': 1.0} # control the sample rate for each dataset
args.device = torch.device('cuda:{}'.format(args.gpu[0]) if torch.cuda.is_available() and args.gpu != -1 else 'cpu')
if not os.path.exists(args.save_dir):
os.mkdir(args.save_dir)
writer = SummaryWriter(log_dir=args.save_dir/ 'summary')
def save_networks(net, epoch, local=False, local_no = None):
"""Save all the networks to the disk.
Parameters:
epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name)
"""
if local:
save_filename = '%s_C%s_net.pth' % (epoch,local_no)
else:
save_filename = '%s_net.pth' % (epoch)
save_path = os.path.join(args.save_dir, save_filename)
if len(args.gpu) > 1 and torch.cuda.is_available():
torch.save(net.module.cpu().state_dict(), save_path)
net.to(args.device)
else:
torch.save(net.cpu().state_dict(), save_path)
net.to(args.device)
# data loader
def _create_dataset(data_path,data_transform, data_partition, sequence, sample_rate=None):
dataset = SliceData(
root=data_path / data_partition,
transform=data_transform,
sample_rate=sample_rate,
challenge=args.challenge,
sequence =sequence
)
return dataset
# load dataset and split users
if args.dataset == 'mri':
mask = create_mask_for_mask_type(args.mask_type, args.center_fractions,
args.accelerations)
train_data_transform = DataTransform(args.resolution, args.challenge, mask, use_seed=False)
val_data_transform = DataTransform(args.resolution, args.challenge, mask)
datasets_list = []
if args.phase == 'train':
for data in args.train_datasets:
dataset_train = _create_dataset(path_dict[data]/args.sequence,train_data_transform, 'train', args.sequence,rate_dict[data])
datasets_list.append(dataset_train)
dataset_val = _create_dataset(path_dict[args.test_dataset]/args.sequence,val_data_transform, 'val', args.sequence, args.val_sample_rate)
else:
exit('Error: unrecognized dataset')
assert (len(datasets_list)==args.num_users)
# build model
if args.model == 'unet':
net_glob = UnetModel(
in_chans=1,
out_chans=1,
chans=32,
num_pool_layers=4,
drop_prob=0.0
).to(args.device)
else:
exit('Error: unrecognized model')
print(net_glob)
net_glob.train()
# copy weights
if len(args.gpu) > 1:
net_glob = torch.nn.DataParallel(net_glob, args.gpu)
w_glob = net_glob.module.state_dict()
else:
w_glob = net_glob.state_dict()
# training
loss_train = []
cv_loss, cv_acc = [], []
val_loss_pre, counter = 0, 0
net_best = None
best_loss = None
val_acc_list, net_list = [], []
if args.phase == 'train':
start_epoch = -1
if args.continues:
if len(args.gpu) > 1:
net_glob.module.load_state_dict(torch.load(args.checkpoint))
else:
net_glob.load_state_dict(torch.load(args.checkpoint))
print('Load checkpoint :', args.checkpoint)
start_epoch = int(args.checkpoint.split('/')[-1].split('_')[0])
for iter in range(start_epoch+1,args.epochs):
w_locals, loss_locals = [], []
for idx, dataset_train in enumerate(datasets_list):
local = LocalUpdate(args=args, device=args.device, dataset=dataset_train)
# global update
w, loss, _ = local.train(net=copy.deepcopy(net_glob).to(args.device),epoch=iter, idx=idx, writer=writer)
w_locals.append(copy.deepcopy(w))
loss_locals.append(copy.deepcopy(loss))
# update global weights
w_glob = FedAvg(w_locals)
# copy weight to net_glob
net_glob.load_state_dict(w_glob)
# print loss
loss_avg = np.sum(loss_locals) / len(loss_locals)
print('Round {:3d}, Average loss {:.3f}'.format(iter, loss_avg))
print('saving the model at the end of epoch %d' % (iter))
save_networks(net_glob, iter)
print('Evaluation ...')
validation = evaluator(dataset_val, args, writer,args.device)
validation.evaluate_recon(net_glob,iter)
writer.close()