-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPNSF_Ecc_Fluxes.nb
14099 lines (13819 loc) · 741 KB
/
PNSF_Ecc_Fluxes.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 744751, 14091]
NotebookOptionsPosition[ 736816, 13822]
NotebookOutlinePosition[ 737242, 13839]
CellTagsIndexPosition[ 737199, 13836]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["\<\
Tutorial: Loading and manipulating eccentric orbit PNSF data for the energy \
flux at infinity\
\>", "Section",
CellChangeTimes->{{3.7469121209651327`*^9, 3.746912126535883*^9}, {
3.760799673349503*^9, 3.760799713889401*^9}, {3.782497037240129*^9,
3.782497044700177*^9}}],
Cell[CellGroupData[{
Cell["Ensure that the directory is in Mathematica\[CloseCurlyQuote]s file \
path", "Subsection",
CellChangeTimes->{{3.760799719168483*^9, 3.760799728615781*^9}}],
Cell[BoxData["$Path"], "Input",
CellChangeTimes->{{3.7469120888781652`*^9, 3.7469120896196012`*^9}, {
3.746912200439054*^9, 3.7469122007550097`*^9}, 3.7602884173249893`*^9, {
3.7602888480450773`*^9, 3.7602888645420713`*^9}, 3.7608943437566442`*^9, {
3.760984633569392*^9, 3.7609846582341337`*^9}, 3.782497073619295*^9, {
3.782497103898106*^9, 3.782497106172545*^9}, 3.782497736248373*^9}]
}, Closed]],
Cell[CellGroupData[{
Cell["Load the PNSF package", "Subsection",
CellChangeTimes->{{3.7607997350396976`*^9, 3.760799737606296*^9}, {
3.760890822255431*^9, 3.760890823086685*^9}}],
Cell[BoxData[
RowBox[{"<<", "PostNewtonianSelfForce`"}]], "Input",
CellChangeTimes->{{3.742754017946384*^9, 3.742754028818142*^9}, {
3.742762255532757*^9, 3.742762256153185*^9}, 3.743151957511593*^9, {
3.761400013952961*^9, 3.761400051700719*^9}, {3.761400279205154*^9,
3.7614002814128113`*^9}},
ExpressionUUID -> "faf699e7-7d27-4760-bd5c-abaf22de2c46"]
}, Open ]],
Cell[CellGroupData[{
Cell["\<\
Use \[OpenCurlyDoubleQuote]PostNewtonianExpansion\[CloseCurlyDoubleQuote] \
with the file path to load the data structure (similar to an association) \
into a variable\
\>", "Subsection",
CellChangeTimes->{{3.760799746369216*^9, 3.7607997826749496`*^9}, {
3.7608908329387283`*^9, 3.76089083330333*^9}, {3.760984702738269*^9,
3.760984710298996*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"energyInf", "=",
RowBox[{"PostNewtonianExpansion", "[",
RowBox[{"{",
RowBox[{
"\"\<Schwarzschild\>\"", ",", "\"\<Eccentric\>\"", ",", "\"\<Flux\>\"",
",", "\"\<EInfinity\>\""}], "}"}], "]"}]}]], "Input",
CellChangeTimes->{{3.746912105560754*^9, 3.7469121108193617`*^9}, {
3.7469121536362762`*^9, 3.7469121555846643`*^9}, 3.7469134385372*^9, {
3.7469135456016617`*^9, 3.746913564739676*^9}, {3.74691371658326*^9,
3.746913761150175*^9}, {3.7469141801556273`*^9, 3.7469141825950317`*^9}, {
3.746914231510116*^9, 3.7469142326411333`*^9}, {3.7607968094703712`*^9,
3.76079681208143*^9}, {3.761000617492275*^9, 3.761000618079097*^9}, {
3.7610012879712467`*^9, 3.761001288373637*^9}, 3.7610056479315968`*^9,
3.761149917693267*^9, {3.761319678190709*^9, 3.7613196786791353`*^9},
3.773007635982757*^9}],
Cell[BoxData[
TagBox[
InterpretationBox[
RowBox[{
TagBox["PostNewtonianData",
"SummaryHead"], "[",
TemplateBox[{GridBox[{{
RowBox[{
TagBox["\"Name: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]",
TagBox[
"Schwarzschild Eccentric Orbit Energy Flux", "SummaryItem"]}]}, {
RowBox[{
RowBox[{
TagBox["\"Starting order: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["5", "SummaryItem"]}], "\t",
RowBox[{
TagBox["\"Maximum order: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["14", "SummaryItem"]}]}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Automatic}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision ->
3, ShowSyntaxStyles -> False}]},
"SummaryPanel"], "]"}],
PostNewtonianSelfForce`PostNewtonianData[
Association[
"Name" -> "Schwarzschild Eccentric Orbit Energy Flux", "Description" ->
"Post-Newtonian expansion for the energy flux for a particle on an \
eccentric orbit about a Schwarzschild black hole to first order in the mass \
ratio.", "Authors" -> {
"Christopher Munna, Charles R. Evans, Seth Hopper, Erik Forseth"},
"References" -> {"TBD"},
"ExtraFunctions" -> {Null, Null, Null, Null, Null, Null}, "Series" ->
SeriesData[$CellContext`y,
0, {(1 - $CellContext`e^2)^Rational[-7, 2] (Rational[32, 5] +
Rational[292, 15] $CellContext`e^2 +
Rational[37, 15] $CellContext`e^4),
0, -(1 - $CellContext`e^2)^Rational[-9, 2] (Rational[2494, 105] +
Rational[15901, 105] $CellContext`e^2 +
Rational[9253, 60] $CellContext`e^4 +
Rational[4037, 280] $CellContext`e^6),
HoldForm[
$CellContext`oneP5PN[$CellContext`e, $CellContext`highestPower]],
Rational[35, 2] (1 - $CellContext`e^2)^(-4) (Rational[32, 5] +
Rational[292, 15] $CellContext`e^2 +
Rational[37, 15] $CellContext`e^4) + (1 - $CellContext`e^2)^
Rational[-11, 2] (Rational[-406942, 2835] +
Rational[-1430873, 2835] $CellContext`e^2 +
Rational[2161337, 3780] $CellContext`e^4 +
Rational[231899, 360] $CellContext`e^6 +
Rational[499451, 10080] $CellContext`e^8),
PostNewtonianSelfForce`ResummedSeries`ResummedSeriesData[(
1 - $CellContext`e^2)^(-6),
SeriesData[$CellContext`e, 0, {
Rational[-8191, 105] Pi, 0, Rational[-124006, 105] Pi, 0,
Rational[-20327389, 6720] Pi, 0, Rational[-87458089, 60480] Pi, 0,
Rational[-67638841, 1105920] Pi, 0, Rational[-332887, 4032000] Pi,
0, Rational[482542621, 74317824000] Pi, 0,
Rational[-43302428147, 10924720128000] Pi, 0,
Rational[2970543742759, 5593456705536000] Pi, 0,
Rational[-3024851376397, 32362142367744000] Pi, 0,
Rational[-24605201296594481, 724911989037465600000] Pi, 0,
Rational[-64712706369332969, 87714350673533337600000] Pi, 0,
Rational[177207644660825244209, 101046931975910404915200000] Pi, 0,
Rational[3013091132877452273503, 4269232875982214607667200000] Pi,
0, Rational[
631183447773488433695297, 3400206806115612700862054400000] Pi, 0,
Rational[
6442480356462742183196713, 214213028785283600154309427200000] Pi},
0, 31, 1]], Rational[-54784, 525] HoldForm[
$CellContext`chi3PN[$CellContext`e, $CellContext`highestPower]] + (
1 - $CellContext`e^2)^Rational[-13, 2] (
Rational[2193295679, 1559250] +
Rational[55022404229, 3118500] $CellContext`e^2 +
Rational[68454474929, 2079000] $CellContext`e^4 +
Rational[40029894853, 4158000] $CellContext`e^6 +
Rational[-32487334699, 22176000] $CellContext`e^8 +
Rational[-233745653, 1774080] $CellContext`e^10 + (
1 - $CellContext`e^2)^Rational[1, 2] (Rational[-14047483, 23625] +
Rational[-75546769, 15750] $CellContext`e^2 +
Rational[-210234049, 63000] $CellContext`e^4 +
Rational[1128608203, 378000] $CellContext`e^6 +
Rational[123503, 336] $CellContext`e^8) + (1 +
Rational[85, 6] $CellContext`e^2 +
Rational[5171, 192] $CellContext`e^4 +
Rational[1751, 192] $CellContext`e^6 +
Rational[297, 1024] $CellContext`e^8) (Rational[-3736352, 18375] +
Rational[-54784, 525] EulerGamma + Rational[512, 15] Pi^2 +
Rational[-54784, 175] Log[2] +
Rational[-54784, 525] (
Log[(1 - $CellContext`e^2)/(
1 + (1 - $CellContext`e^2)^Rational[1, 2])] +
Rational[1, 2] Log[$CellContext`y]))),
PostNewtonianSelfForce`ResummedSeries`ResummedSeriesData[(
1 - $CellContext`e^2)^(-7),
SeriesData[$CellContext`e, 0, {
Rational[-13028, 63] Pi, 0, Rational[-21500207, 7560] Pi, 0,
Rational[-3345329, 7560] Pi, 0, Rational[111594754909, 6531840] Pi,
0, Rational[82936785623, 8709120] Pi, 0,
Rational[11764982139179, 16721510400] Pi, 0,
Rational[216868426237103, 1504935936000] Pi, 0,
Rational[30182578123501193, 393289924608000] Pi, 0,
Rational[351410391437739607, 7551166552473600] Pi, 0,
Rational[1006563319333377521717, 32621039506685952000] Pi, 0,
Rational[138433556497603036591, 6371296778649600000] Pi, 0,
Rational[16836217054749609972406421, 1052572208082400051200000] Pi,
0, Rational[
2077866815397007172515220959, 170516697709348808294400000] Pi, 0,
Rational[
6702459208696786891810972264771, 702593753304501604004659200000]
Pi, 0, Rational[
1003693903183075635039911792668567,
131448904027333118276508057600000] Pi, 0,
Rational[
2160389373606905789762084388554056897,
347025106632159432249981272064000000] Pi}, 0, 31,
1]], (1 - $CellContext`e^2)^Rational[-15, 2] (
Rational[1860776, 11025] +
Rational[19694044, 3675] $CellContext`e^2 +
Rational[284556358, 11025] $CellContext`e^4 +
Rational[318425291, 11025] $CellContext`e^6 +
Rational[1256401651, 176400] $CellContext`e^8 +
Rational[7220691, 39200] $CellContext`e^10) Log[$CellContext`y] +
PostNewtonianSelfForce`ResummedSeries`ResummedSeriesData[(
1 - $CellContext`e^2)^Rational[-15, 2],
SeriesData[$CellContext`e, 0, {
Rational[-323105549467, 496621125] +
Rational[3721552, 11025] EulerGamma + Rational[-21904, 315] Pi^2 +
Rational[638896, 735] Log[2] + Rational[-9477, 49] Log[3], 0,
Rational[-128412398137, 3678675] +
Rational[39388088, 3675] EulerGamma + Rational[-836392, 315] Pi^2 +
Rational[-2745416, 315] Log[2] + Rational[55105839, 2450] Log[3],
0, Rational[-981480754818517, 3972969000] +
Rational[569112716, 11025] EulerGamma +
Rational[-4453948, 315] Pi^2 + Rational[3048310852, 3675] Log[2] +
Rational[-2595297591, 11200] Log[3] +
Rational[-3173828125, 28224] Log[5], 0,
Rational[-874590390287699, 1986484500] +
Rational[636850582, 11025] EulerGamma +
Rational[-1763002, 105] Pi^2 +
Rational[-181525970642, 19845] Log[2] +
Rational[31649037093, 156800] Log[3] +
Rational[2017809765625, 508032] Log[5], 0,
Rational[-588262620227803, 2444904000] +
Rational[1256401651, 88200] EulerGamma +
Rational[-3609941, 840] Pi^2 +
Rational[60196618062379, 793800] Log[2] +
Rational[103481536492359, 4014080] Log[3] +
Rational[-2737870837109375, 65028096] Log[5] +
Rational[-8816899947037, 1327104] Log[7], 0,
Rational[-2506068425640457, 42378336000] +
Rational[7220691, 19600] EulerGamma + Rational[-63771, 560] Pi^2 +
Rational[-7802806392729223, 13230000] Log[2] +
Rational[-304325022941627589, 1003520000] Log[3] +
Rational[10534380560546875, 43352064] Log[5] +
Rational[99735805288105217, 552960000] Log[7], 0,
Rational[-205790655085493, 5189184000] +
Rational[9036104785041317, 1786050] Log[2] +
Rational[4775869078725402009, 3211264000] Log[3] +
Rational[-959173292969921875, 1040449536] Log[5] +
Rational[-179568613346696178017, 95551488000] Log[7], 0,
Rational[-220418822061491, 7112448000] +
Rational[-18302329576715360683, 486202500] Log[2] +
Rational[1885850801883826280091, 1573519360000] Log[3] +
Rational[1654334567459113671875, 917676490752] Log[5] +
Rational[10741152780138672399389, 955514880000] Log[7], 0,
Rational[-159132872416057, 6322176000] +
Rational[5005163077277925365639, 23337720000] Log[2] +
Rational[-13522230279210495105919953, 201410478080000] Log[3] +
Rational[22678947894258825865234375, 1879401453060096] Log[5] +
Rational[-22070141459932903954646911, 489223618560000] Log[7] +
Rational[-128046524785498944231253933, 46985036326502400] Log[11],
0, Rational[-2411284811785901, 113799168000] +
Rational[-10992295468004893460730337, 11342131920000] Log[2] +
Rational[196720124922622328746203459, 402820956160000] Log[3] +
Rational[-52598919441991747113901953125, 304463035395735552]
Log[5] + Rational[
10430990771539233869788228813, 79254226206720000] Log[7] +
Rational[254573337422120389533453144079, 3883457084129280000]
Log[11], 0, Rational[-16658388765600773, 910393344000] +
Rational[4385551222926869392204436191, 1134213192000000] Log[2] +
Rational[-5115295175400252454931829083079, 2578054119424000000]
Log[3] + Rational[
11024715062884847298771812890625, 9742817132663537664] Log[5] +
Rational[-9281804142209133267296978225707, 31701690482688000000]
Log[7] + Rational[-105821503526052929566935591503760161,
152231517697867776000000] Log[11] +
Rational[-201538126434611150798503956371773,
6089260707914711040000] Log[13], 0,
Rational[-7167393697742263, 445081190400] +
Rational[-464527798848410289019456647629, 30497732496000000]
Log[2] + Rational[
16148146363411128539562234986733, 3565080553717760000] Log[3] +
Rational[-11663194659191754254542410576953125,
2357761746104576114688] Log[5] +
Rational[
1037012046597480625141068033418333, 2557269698936832000000]
Log[7] + Rational[
1361119392089846298730924612971888173, 304463035395735552000000]
Log[11] +
Rational[
1947535390241069077798460237977099847,
2456001818858933452800000] Log[13], 0,
Rational[-288024439618530343, 20028653568000] +
Rational[400376201101758258958277996352587, 6587510219136000000]
Log[2] + Rational[-365212634570093310559865471346057,
399289022016389120000] Log[3] +
Rational[
481470872097631167923132283993359375, 30865244676278087319552]
Log[5] + Rational[
403063963590163996059559617769743167, 218220347642609664000000]
Log[7] + Rational[-6982982282418896127766989324495717460841,
350741416775887355904000000] Log[11] +
Rational[-33217094844802738169073484124157052182653,
3858155584534760914944000000] Log[13], 0,
Rational[-17258569677646181, 1328431104000] +
Rational[-525658903625835135331046695340924387,
2226578454067968000000] Log[2] +
Rational[-116333914547134153375875146564169379641,
3373992236038488064000000] Log[3] +
Rational[-8256848174426775389254178576329296875,
260219908631296890372096] Log[5] +
Rational[-163886278263537458773009309290485580402433,
5974436677759367380992000000] Log[7] +
Rational[
1117875553016582215572561761628108840827681,
16935799838607132327936000000] Log[11] +
Rational[
4887366740121193095555644521813310334564457,
84879422859764740128768000000] Log[13], 0,
Rational[-21937143147031993481, 1851537752064000] +
Rational[
130729389469010416531272892685127537997,
145469792332440576000000] Log[2] +
Rational[
4932438079643821059829926241323327149114379,
42323358608866794274816000000] Log[3] +
Rational[-14522215765979327973430343588128067751953125,
1439511553437105793036959350784] Log[5] +
Rational[
9176325839799812324927463285444566651377547,
47795493422074939047936000000] Log[7] +
Rational[-99022806716133770015943304500503187861380357,
580897934464224638848204800000] Log[11] +
Rational[-40770836147759258430292816208381787949847437,
151239698913762627865804800000] Log[13] +
Rational[-197770344305988984840145602058543169130838081,
69207286222937778511392276480000] Log[17], 0,
Rational[-362935722968443454009, 33327679537152000] +
Rational[-27836304428069237409471524775381340059529,
7855368785951791104000000] Log[2] +
Rational[-32117899714794653368916995461611730119506131,
2116167930443339713740800000000] Log[3] +
Rational[
12756297847701756652755037472282201006992578125,
25911207961867904274665268314112] Log[5] +
Rational[-736223164835315811397680717849275269711307729,
796591557034582317465600000000] Log[7] +
Rational[
462252462839429253596305311655907598009063471407,
1307020352544505437408460800000000] Log[11] +
Rational[
236556593119967994220105031983266829519144677949,
249545503207708335978577920000000] Log[13] +
Rational[
142549541267649659112186926075881019170957630783649,
2024313122020930021458224087040000000] Log[17]}, 0, 31, 1]],
HoldForm[
$CellContext`fourP5PNLog[$CellContext`e, \
$CellContext`highestPower]] Log[$CellContext`y] +
PostNewtonianSelfForce`ResummedSeries`ResummedSeriesData[(
1 - $CellContext`e^2)^(-8),
SeriesData[$CellContext`e, 0, {
Pi (Rational[265978667519, 116424000] +
Rational[-219136, 525] EulerGamma +
Rational[-438272, 525] Log[2]), 0,
Pi (Rational[5031659060513, 69854400] +
Rational[-3347816, 315] EulerGamma +
Rational[-8192776, 1575] Log[2] +
Rational[-2808108, 175] Log[3]), 0,
Pi (Rational[4137488075571679, 11176704000] +
Rational[-64980458, 1575] EulerGamma +
Rational[-112699462, 225] Log[2] +
Rational[35803377, 175] Log[3]), 0,
Pi (Rational[119161057323769, 251475840] +
Rational[-283848209, 7560] EulerGamma +
Rational[212985174443, 37800] Log[2] +
Rational[-481356513, 400] Log[3] +
Rational[-5224609375, 3024] Log[5]), 0,
Pi (Rational[916628147773341301, 10300450406400] +
Rational[-275602147, 36288] EulerGamma +
Rational[-8023715124847, 181440] Log[2] +
Rational[-135922489587, 22400] Log[3] +
Rational[559033203125, 24192] Log[5]), 0,
Pi (Rational[-3573258583239042403, 429185433600000] +
Rational[-59600244089, 362880000] EulerGamma +
Rational[97515544148275847, 362880000] Log[2] +
Rational[2380413947183397, 17920000] Log[3] +
Rational[-335007177734375, 2322432] Log[5] +
Rational[-3555923570947307, 69120000] Log[7]), 0,
Pi (Rational[1156775996108996025263, 52973744947200000] +
Rational[482765917, 622080000] EulerGamma +
Rational[-8331148232116996469, 4354560000] Log[2] +
Rational[-65185637076600813, 71680000] Log[3] +
Rational[1728943408203125, 3096576] Log[5] +
Rational[67562547847998833, 92160000] Log[7]), 0,
Pi (Rational[16222590924172672363813, 825908841676800000] +
Rational[-532101153539, 2275983360000] EulerGamma +
Rational[289160600380554693747941, 20483850240000] Log[2] +
Rational[56312654932407415977, 28098560000] Log[3] +
Rational[-24612067727978515625, 16387080192] Log[5] +
Rational[-587363899525505222953, 119439360000] Log[7]), 0,
Pi (Rational[6299785378373373183732769, 379715803781529600000] +
Rational[576726373021, 15606743040000] EulerGamma +
Rational[-27003863767864895675857183, 327741603840000] Log[2] +
Rational[996166895932949809491, 64225280000] Log[3] +
Rational[-20343587009423828125, 262193283072] Log[5] +
Rational[13158435591869830400089, 637009920000] Log[7]), 0,
Pi (Rational[
2390009358155681822716006493, 167454669467654553600000] +
Rational[-98932878601597, 283168745717760000] EulerGamma +
Rational[104171781832571678335877911171, 283168745717760000]
Log[2] + Rational[-67967743435293045571281, 411041792000]
Log[3] + Rational[26225163626188635693359375, 604093324197888]
Log[5] + Rational[-201369178838870975710107953,
3302259425280000] Log[7] +
Rational[-11593135359425558258475836857, 1132674982871040000]
Log[11]), 0,
Pi (Rational[
15066268805328597324796666374943, 1205673620167112785920000000] +
Rational[-56946683948951263, 84950623715328000000] EulerGamma +
Rational[-16682097215887484672122722581609, 12135803387904000000]
Log[2] +
Rational[225373323362584376415683169, 287729254400000] Log[3] +
Rational[-7648740311006052337744140625, 21747359671123968]
Log[5] + Rational[
44457787075142564422163831407, 330225942528000000] Log[7] +
Rational[3744582721094455317487695304811, 22653499657420800000]
Log[11]), 0,
Pi (Rational[
2313879104108209480423765423979, 208409297200315210137600000] +
Rational[-90233805781037113, 4698983071796428800000] EulerGamma +
Rational[
811484650708136247308099420437063733, 164464407512875008000000]
Log[2] +
Rational[-4803900292169262929884056073029, 2228175346073600000]
Log[3] + Rational[
713878194952023910155419921875, 425281700235313152] Log[5] +
Rational[-20140572352764279047986613942641, 87179648827392000000]
Log[7] +
Rational[-6918307863955436720769781926946463,
5436839917780992000000] Log[11] +
Rational[-21564579528503393135439923331779711,
219285876683833344000000] Log[13]), 0,
Pi (Rational[
13423021060477629332497529363850498593,
1344490058098673483639685120000000] +
Rational[73049155670984045033, 3947145780309000192000000]
EulerGamma +
Rational[-72681361639182521591474009109755907607,
3947145780309000192000000] Log[2] +
Rational[207316256664936486840716751033249, 89127013842944000000]
Log[3] +
Rational[-5701828997246578349443556201171875,
1010469319759104049152] Log[5] +
Rational[
672754640062963458833549314225817, 23015427290431488000000]
Log[7] + Rational[
90168311458471025510370046025305181, 14498239780749312000000]
Log[11] + Rational[
2954347395404964859555269496453820407,
1754287013470666752000000] Log[13]), 0,
Pi (Rational[
412045304562589087098458552209955345263,
45443763963735163747021357056000000] +
Rational[30834120217438664094539, 6403849313973321911500800000]
EulerGamma +
Rational[
730836503441696300665188805731587637712253,
10673082189955536519168000000] Log[2] +
Rational[
495190048081402469268036345430669887, 60249861357830144000000]
Log[3] + Rational[
5284436248862258638692397401513671875,
390329862946945335558144] Log[5] +
Rational[
270238789252533118729814605777732193183,
57446506516916994048000000] Log[7] +
Rational[-1836663654229976414503152570284794865519,
84678999193035661639680000] Log[11] +
Rational[-20934225304305710450697878932868458267759,
1515703979638656073728000000] Log[13]), 0,
Pi (Rational[
986088659777178288555668748065005551725623,
118759703158561227925549146439680000000] +
Rational[
4892777190662608136893709, 6275772327693855473270784000000]
EulerGamma +
Rational[-73026043655504873998451078193943024908310759,
298846301318755022536704000000] Log[2] +
Rational[-523943160072859797661175222060398522413,
11808972826134708224000000] Log[3] +
Rational[-7541103973691874458271993405006103515625,
535532571963209000385773568] Log[5] +
Rational[-42238088019977814508178891785023555368189,
995739446293227896832000000] Log[7] +
Rational[
262284728859707988473328067900719515725489,
4559638418086535626752000000] Log[11] +
Rational[
68166994458109521414893130366925568592793,
943104698441830445875200000] Log[13]), 0,
Pi (Rational[
4092104258353456223172175053014624234526643,
534418664213525525664971158978560000000] +
Rational[
625894086470885360433206659,
6024741434586101254339952640000000] EulerGamma +
Rational[
8881122952414426852121638923453342623895290203781,
10041235724310168757233254400000000] Log[2] +
Rational[
2436924389570627434903634771849767192569033,
37788713043631066316800000000] Log[3] +
Rational[-12510259159245171208487708125986846923828125,
154233380725404192111102787584] Log[5] +
Rational[
13789969897935982525483919427617639747807593,
59744366777593673809920000000] Log[7] +
Rational[-501033552311938164840327367787127469541837459,
4149270960458747420344320000000] Log[11] +
Rational[-4030874919841880524301330974240992228282169301,
14853899000458829522534400000000] Log[13] +
Rational[-359744256292593963424224850144490024648994469339,
60247414345861012543399526400000000] Log[17])}, 0, 31, 1]], (
Rational[-65, 2] (1 - $CellContext`e^2)^(-7) (Rational[27392, 525] +
Rational[232832, 315] $CellContext`e^2 +
Rational[2213188, 1575] $CellContext`e^4 +
Rational[749428, 1575] $CellContext`e^6 +
Rational[10593, 700] $CellContext`e^8) + (1 - $CellContext`e^2)^
Rational[-17, 2] (Rational[20323794508, 9823275] +
Rational[234246754898, 9823275] $CellContext`e^2 +
Rational[-134388545728, 3274425] $CellContext`e^4 +
Rational[-78989239933, 255150] $CellContext`e^6 +
Rational[-88593702010771, 314344800] $CellContext`e^8 +
Rational[-52385087339, 931392] $CellContext`e^10 +
Rational[-245975507, 201600] $CellContext`e^12))
Log[$CellContext`y] +
PostNewtonianSelfForce`ResummedSeries`ResummedSeriesData[(
1 - $CellContext`e^2)^Rational[-17, 2],
SeriesData[$CellContext`e, 0, {
Rational[-2500861660823683, 442489422375] +
Rational[7333027736, 9823275] EulerGamma +
Rational[-3393784, 8505] Pi^2 +
Rational[-665740888, 1403325] Log[2] + Rational[75816, 49] Log[3],
0, Rational[-121566202635820681, 884978844750] +
Rational[46509066916, 9823275] EulerGamma +
Rational[-67381628, 8505] Pi^2 +
Rational[166113390188, 893025] Log[2] +
Rational[-1380946887, 21560] Log[3] +
Rational[-76708984375, 3143448] Log[5], 0,
Rational[-886493383307889029, 2359943586000] +
Rational[-336042429596, 3274425] EulerGamma +
Rational[-29697302, 2835] Pi^2 +
Rational[-15969820306268, 3274425] Log[2] +
Rational[61777429029, 431200] Log[3] +
Rational[24156689453125, 12573792] Log[5], 0,
Rational[11463059954793067, 8358714000] +
Rational[-67781855563, 127575] EulerGamma +
Rational[111910879, 1215] Pi^2 +
Rational[1925006801181043, 29469825] Log[2] +
Rational[153356656665033, 6899200] Log[3] +
Rational[-6132941934734375, 164602368] Log[5] +
Rational[-1065488447445779, 184757760] Log[7], 0,
Rational[795250700567716188661, 226554584256000] +
Rational[-87324451928671, 157172400] EulerGamma +
Rational[18721480031, 136080] Pi^2 +
Rational[-1144122046047827351, 1414551600] Log[2] +
Rational[-1471582866548637, 3449600] Log[3] +
Rational[25449162702359375, 73903104] Log[5] +
Rational[35870658739515341, 147806208] Log[7], 0,
Rational[1311087127531019381, 629318289600] +
Rational[-301503186907, 2328480] EulerGamma +
Rational[367280273, 10080] Pi^2 +
Rational[724621195130071161187, 70727580000] Log[2] +
Rational[71931336657279313167, 22077440000] Log[3] +
Rational[-2832117272365765625, 1430618112] Log[5] +
Rational[-22777094431721914591951, 5912248320000] Log[7], 0,
Rational[751691355280895881, 1120863744000] +
Rational[-752883727, 100800] EulerGamma +
Rational[338981, 144] Pi^2 +
Rational[-3977932278674270500921, 36374184000] Log[2] +
Rational[-581016223111983489, 2523136000] Log[3] +
Rational[1068700846945047953125, 173820100608] Log[5] +
Rational[7236516371527403027624893, 212840939520000] Log[7], 0,
Rational[727785795960442333, 1716322608000] +
Rational[-22176713, 10080] EulerGamma +
Rational[207259, 288] Pi^2 +
Rational[3034294240329027032983919, 3465651420000] Log[2] +
Rational[-4075189605143869754199591, 17308712960000] Log[3] +
Rational[479278285271088403625703125, 13082396052160512] Log[5] +
Rational[-8971675684619401252324343, 45406067097600] Log[7] +
Rational[-1406720912153977911799300201, 148663591501824000]
Log[11], 0, Rational[3611263059485721467, 11266117632000] +
Rational[-198577769, 161280] EulerGamma +
Rational[1855867, 4608] Pi^2 +
Rational[-541652293053485542314696229, 99810760896000] Log[2] +
Rational[554922281757815315698449393, 221551525888000] Log[3] +
Rational[-170886290639415295302094671875, 209318336834568192]
Log[5] + Rational[
22549099513906093263830730721, 27243640258560000] Log[7] +
Rational[141493154694151395108628850591, 475723492805836800]
Log[11], 0, Rational[69601257007684320983, 270386823168000] +
Rational[-50119121, 64512] EulerGamma +
Rational[2342015, 9216] Pi^2 +
Rational[109781190654978606560394440527, 3849843634560000] Log[2] +
Rational[-188014088639146352307531947919, 12890270597120000]
Log[3] + Rational[
8028541447276945108860971774046875, 1085106258150401507328]
Log[5] + Rational[-372429306703484616510909901342601,
141231031100375040000] Log[7] +
Rational[-258596422272137819931737595416245529,
61653764667636449280000] Log[11] +
Rational[-24355107432982624454188439650773491,
135638282268800188416000] Log[13], 0,
Rational[33246775110032775751, 154506756096000] +
Rational[-195002899, 368640] EulerGamma +
Rational[12757199, 73728] Pi^2 +
Rational[-2270370462872426730464545879834501,
16169343265152000000] Log[2] +
Rational[729263080819497139353817682843583, 14179297656832000000]
Log[3] + Rational[-91920862644303227841514331171875,
2087746528427900928] Log[5] +
Rational[
83480176052377570502842035271856213, 14123103110037504000000]
Log[7] + Rational[
44345012553536845437940229181191303651,
1233075293352728985600000] Log[11] +
Rational[
14750745575827266959161911087434972117,
2712765645376003768320000] Log[13], 0,
Rational[183326421874564145453, 991418351616000] +
Rational[-280151573, 737280] EulerGamma +
Rational[18327673, 147456] Pi^2 +
Rational[
106317252245881632755162007183947501, 156519242806671360000]
Log[2] + Rational[-52799602885157354192113502942112609,
686278006590668800000] Log[3] +
Rational[
28400688660795684755435768095488359375,
150054693984226951299072] Log[5] +
Rational[
46745915694763025439980062049367697157,
6076072804673912832000000] Log[7] +
Rational[-21037254546096068690712089224958011768673,
98646023468218318848000000] Log[11] +
Rational[-1422448366444425138603635946425419830840619,
18756836748028368912384000000] Log[13], 0,
Rational[30864501679686070767611, 190352323510272000] +
Rational[-1675599991, 5898240] EulerGamma +
Rational[109618691, 1179648] Pi^2 +
Rational[-896444593682942849131965215378699992609,
281734637052008448000000] Log[2] +
Rational[-234920718182736318892771791408052107,
907475050037248000000] Log[3] +
Rational[-171885120729958045185952975653339755546875,
302510263072201533818929152] Log[5] +
Rational[-59365159827818913130194992037928307034491,
218738620968260861952000000] Log[7] +
Rational[
333675656098724824930792921524381051322093,
355125684485585947852800000] Log[11] +
Rational[
773724258808875572567701999421301892533262373,
1181680715125787241480192000000] Log[13], 0,
Rational[102084612337494153426497, 707022915895296000] +
Rational[-2584674131, 11796480] EulerGamma +
Rational[169090831, 2359296] Pi^2 +
Rational[
456452629890372420233773208130065768211601,
31742102441192951808000000] Log[2] +
Rational[
63034842434533963832410934632118059083003,
33932721916729937100800000] Log[3] +
Rational[
2136863517251758644857827482498128571914140625,
3271951005388931789785537708032] Log[5] +
Rational[
4471529397992345145246391896240181171813379699,
1774407693294532112154624000000] Log[7] +
Rational[-643844472600411849233295587249286039774462889,
200054135593546750623744000000] Log[11] +
Rational[-74890225358435641086300617728157155132253475293,
18906891442012595863683072000000] Log[13] +
Rational[-310697210904708695183868740833971318704546625251,
10224846891840411843079805337600000] Log[17], 0,
Rational[3909987145809574339, 30042980352000] +
Rational[-2861449747, 16515072] EulerGamma +
Rational[133712605, 2359296] Pi^2 +
Rational[-303721619211253613857258356755247420683974651,
4666089058855363915776000000] Log[2] +
Rational[-760041179830665327484422521733970668059790543,
232778472348767368511488000000] Log[3] +
Rational[
3628687167251435678213180297935269499276776640625,
641302397056230630797965390774272] Log[5] +
Rational[-13816679808497086545005853232349849384638976491,
887203846647266056077312000000] Log[7] +
Rational[
16637160223568917021060136250444946292700383185853,
1882109307664087829868183552000000] Log[11] +
Rational[
1813552634212274318942744334183431584454444677039,
100836754357400511272976384000000] Log[13] +
Rational[
364309816402929587135030049580009821089911429978777,
400813998160144144248728369233920000] Log[17], 0,
Rational[3619325086533846800203, 30550372909056000] +
Rational[-23096568781, 165150720] EulerGamma +
Rational[215855783, 4718592] Pi^2 +
Rational[
14018471012783785702058656064503724315219525683,
46660890588553639157760000000] Log[2] +
Rational[-1339531004459467768497572127528663936747196317867,
93111388939506947404595200000000] Log[3] +
Rational[-4772663145285000525417925152732071533416308836953125,
92347545176097210834907016271495168] Log[5] +
Rational[
5516575055289451709841357068034671708799765624272347,
76654412350323787245079756800000000] Log[7] +
Rational[-134896099182230914896186951664102371056308984199617613,
6775593507590716187525460787200000000] Log[11] +
Rational[-\
13668224662300191716227866187289485615831405842556308079,
213451241623745402262636409651200000000] Log[13] +
Rational[-\
463596004276657416908269933911156807879538223021728031761,
36073259834412972982385553231052800000000] Log[17] +
Rational[-2219832590230784142622408772154981615944217872209856771,
7214651966882594596477110646210560000000] Log[19]}, 0, 31,
1]], Log[$CellContext`y]
PostNewtonianSelfForce`ResummedSeries`ResummedSeriesData[(
1 - $CellContext`e^2)^(-9),
SeriesData[$CellContext`e, 0, {
Rational[354586, 735] Pi, 0, Rational[395031058, 11025] Pi, 0,
Rational[22177125281, 70560] Pi, 0,
Rational[362637121649, 529200] Pi, 0,
Rational[175129893794507, 406425600] Pi, 0,
Rational[137611940506079, 2032128000] Pi, 0,
Rational[75058973874797, 61931520000] Pi, 0,
Rational[1045783525483, 20483850240000] Pi, 0,
Rational[44925442631482501, 293656477040640000] Pi, 0,
Rational[-801339891963050743, 7928724880097280000] Pi, 0,
Rational[719061383331468255529, 38057879424466944000000] Pi, 0,
Rational[14491034377225531751, 65785763005150003200000] Pi, 0,
Rational[-48380310946786430680357, 160756482688948371456000000]
Pi, 0, Rational[
328896042939144986202607, 18296712325638062604288000000] Pi, 0,
Rational[
12426147326832099974747530661,
865091077786722231392403456000000] Pi, 0,
Rational[
1156253390804057519850290651, 878608125877139766257909760000000]
Pi}, 0, 31, 1]] +
PostNewtonianSelfForce`ResummedSeries`ResummedSeriesData[(
1 - $CellContext`e^2)^(-9),
SeriesData[$CellContext`e, 0, {
Pi (Rational[8399309750401, 15891876000] +
Rational[709172, 735] EulerGamma +
Rational[34085132, 11025] Log[2] + Rational[-56862, 49] Log[3]),
0, Pi (Rational[-6454125584294467, 31783752000] +
Rational[790062116, 11025] EulerGamma +
Rational[-783698908, 11025] Log[2] +
Rational[3818502, 25] Log[3]), 0,
Pi (Rational[-354252739653461867, 127135008000] +
Rational[22177125281, 35280] EulerGamma +
Rational[1349842104869, 176400] Log[2] +
Rational[-2818940211, 1568] Log[3] +
Rational[-15869140625, 14112] Log[5]), 0,
Pi (Rational[-644120940331933139, 73229764608] +
Rational[362637121649, 264600] EulerGamma +
Rational[-551674667051, 5880] Log[2] +
Rational[-28712823381, 19600] Log[3] +
Rational[2826869140625, 63504] Log[5]), 0,
Pi (Rational[-21285456729787015659371, 2343352467456000] +
Rational[175129893794507, 203212800] EulerGamma +
Rational[186265422110814923, 203212800] Log[2] +
Rational[3586074861078153, 10035200] Log[3] +
Rational[-16992575623046875, 32514048] Log[5] +
Rational[-61718299629259, 663552] Log[7]), 0,
Pi (Rational[-121494528777300728764499, 39055874457600000] +
Rational[137611940506079, 1016064000] EulerGamma +
Rational[-2039035210114304081, 241920000] Log[2] +
Rational[-1124262988637351823, 250880000] Log[3] +
Rational[4017267818359375, 1204224] Log[5] +
Rational[127867319863142909, 46080000] Log[7]), 0,
Pi (Rational[-594847895319028303244759, 602576348774400000] +
Rational[75058973874797, 30965760000] EulerGamma +
Rational[493889609267108526359161, 5852528640000] Log[2] +
Rational[188323967597029831629, 8028160000] Log[3] +
Rational[-7295774211751953125, 520224768] Log[5] +
Rational[-7573298357490891670939, 238878720000] Log[7]), 0,
Pi (Rational[-5876695211871273104840209, 7381560272486400000] +
Rational[1045783525483, 10241925120000] EulerGamma +
Rational[-50706486020217898479678739, 71693475840000] Log[2] +
Rational[3510932887969444930347, 98344960000] Log[3] +
Rational[135558592279955078125, 4779565056] Log[5] +
Rational[12440871280671483170101, 59719680000] Log[7]), 0,
Pi (Rational[-538650124496115798265596253411,
846576384530920243200000] +
Rational[44925442631482501, 146828238520320000] EulerGamma +
Rational[218813820784937238783944408791, 48942746173440000]
Log[2] + Rational[-58834488166123860463166379, 40282095616000]
Log[3] + Rational[258544641971257816326171875, 939700726530048]
Log[5] + Rational[-225438408861023075568077689, 244611809280000]
Log[7] +
Rational[-1408511772640488386543793263, 23492518163251200]
Log[11]), 0,
Pi (Rational[-72233230016634496259378612168291,
137145374294009079398400000] +
Rational[-801339891963050743, 3964362440048640000] EulerGamma +
Rational[-29535731536786668523738232056061, 1321454146682880000]
Log[2] + Rational[2297115867462524833782302919, 201410478080000]
Log[3] +
Rational[-310550541064660094320310546875, 76115758848933888]
Log[5] + Rational[
59006107885378917075751436561, 19813556551680000] Log[7] +
Rational[74081015808074072368402539728911, 47572349280583680000]
Log[11]), 0,
Pi (Rational[-473902337946246052786422605031113,
1054964417646223687680000000] +
Rational[719061383331468255529, 19028939712233472000000]
EulerGamma +
Rational[
1875782621319194087448808070624813353, 19028939712233472000000]
Log[2] +
Rational[-65175032738861549189925931159101, 1289027059712000000]
Log[3] + Rational[
141263717640551390701981298828125, 4871408566331768832] Log[5] +
Rational[-116963274544873055764721791305169,
15850845241344000000] Log[7] +
Rational[-194469787169380983620005980733255813,
10873679835561984000000] Log[11] +
Rational[-2619995643649944960380551432833049,
3044630353957355520000] Log[13]), 0,
Pi (Rational[-1485479258086895045999433694051900333,
3793049209045736824504320000000] +
Rational[14491034377225531751, 32892881502575001600000]
EulerGamma +
Rational[-491456406334091090066727213878326886123,
1151250852590125056000000] Log[2] +
Rational[
9936379889309261870000937522223983, 77986137112576000000]
Log[3] + Rational[-13604369159921518961700018798828125,
98240072754357338112] Log[5] +
Rational[
11010161661527954752133264400190727, 958976137101312000000]
Log[7] + Rational[
4755414571224335095570301851951729249, 38057879424466944000000]
Log[11] +
Rational[
4858858255287292833966512569630146911,
219285876683833344000000] Log[13]), 0,
Pi (Rational[-21237684384497157419609991958691517855787,
61174297643489643505605672960000000] +
Rational[-48380310946786430680357, 80378241344474185728000000]
EulerGamma +
Rational[
1641553771169878806398830135745385296043881,
884160654789216043008000000] Log[2] +
Rational[-200042451392196558413301779592520119,
4991112775204864000000] Log[3] +
Rational[
108459644712800310282711234473212890625,
226345127626039307010048] Log[5] +
Rational[
478586773531187809900708839010774704713,
8837924079525691392000000] Log[7] +
Rational[-106352248224560231128761894794073757468579,
175370708387943677952000000] Log[11] +
Rational[-5503847627065050999477770909565034374524851,
21219855714941185032192000000] Log[13]), 0,
Pi (Rational[-18795568485497786234084546031226184366723,
60282544033526237623599759360000000] +
Rational[328896042939144986202607, 9148356162819031302144000000]
EulerGamma +
Rational[-1167728300602515413308857372711511454822609003,
149423150659377511268352000000] Log[2] +
Rational[-70801864177729877099583085271075810121,
64884466077663232000000] Log[3] +
Rational[-41541153194195537781263803203369294921875,
38252326568800642884698112] Log[5] +
Rational[-1319221429591956540644705761608890834585251,
1493609169439841845248000000] Log[7] +
Rational[
65153873102388788067781413882012417014307377,
29637649717562481573888000000] Log[11] +
Rational[
39799840205664753048912526629499126564253081,
21219855714941185032192000000] Log[13]), 0,
Pi (Rational[-1146799494293602797625021506402360128996121287,
4052674870285901902959364622254080000000] +
Rational[
12426147326832099974747530661,
432545538893361115696201728000000] EulerGamma +
Rational[
2861709137382131129013490895210192803218721975903,
89255428660534833397628928000000] Log[2] +
Rational[
522749913681995496070686414535244747880141,
125217037304339628032000000] Log[3] +
Rational[-87622231592704416890884521751916390685546875,
719755776718552896518479675392] Log[5] +
Rational[
159846535498752343148567887438751842418086271,
23897746711037469523968000000] Log[7] +
Rational[-72357703964971027829629540364939418570766206667,
11617958689284492776964096000000] Log[11] +
Rational[-79195725180968835721234278980767203248806741769,
8318183440256944532619264000000] Log[13] +
Rational[-3362095853201812742282475234995233875224247377,
34603643111468889255696138240000] Log[17]), 0,
Pi (Rational[-7873608169228226890888242102307772697975164701,
30395061527144264272195234666905600000000] +
Rational[
1156253390804057519850290651,
439304062938569883128954880000000] EulerGamma +
Rational[-14137159554985921032120717473733524168559343740181,
104596205461564257887846400000000] Log[2] +
Rational[-3274439031789947130996756664978148487130977,
2066570244573573939200000000] Log[3] +
Rational[
3589586829653251282532568276734100065802734375,
202431312202093002145822408704] Log[5] +
Rational[-15615194380581899746489419932631430138126654333,
448082750831952553574400000000] Log[7] +
Rational[
1429857377488823027304573758199829483940567159753,
100540027118808110569881600000000] Log[11] +
Rational[
2270674874925868853624664031781590217051704251299,
62386375801927083994644480000000] Log[13] +
Rational[
72177795641765452007157098277542212227094735799,
28240975474622349629718528000000] Log[17])}, 0, 31, 1]], (
Rational[46895104, 55125] HoldForm[
$CellContext`chi6PNLog[$CellContext`e, \
$CellContext`highestPower]] + (1 - $CellContext`e^2)^Rational[-19, 2] (
Rational[-2634350510203129, 245827456875] +
Rational[-239953038071655043, 491654913750] $CellContext`e^2 +
Rational[-411009526770805477, 131107977000] $CellContext`e^4 +
Rational[-17212115479135988207, 3933239310000] $CellContext`e^6 +
Rational[-81213393300931861, 6293182896000] $CellContext`e^8 +
Rational[6299935941231102319, 4195455264000] $CellContext`e^10 +
Rational[30953812320468361, 101708006400] $CellContext`e^12 +
Rational[
205680487293493, 35517081600] $CellContext`e^14 + (
1 - $CellContext`e^2)^Rational[1, 2] (
Rational[297449210876, 52093125] +
Rational[11876593374574, 52093125] $CellContext`e^2 +
Rational[19257103589968, 17364375] $CellContext`e^4 +
Rational[67465356696233, 104186250] $CellContext`e^6 +
Rational[-1111945369132247, 1666980000] $CellContext`e^8 +
Rational[-32687662125259, 123480000] $CellContext`e^10 +
Rational[-116022069, 15680] $CellContext`e^12) + (1 +
Rational[16579, 384] $CellContext`e^2 +
Rational[459595, 1536] $CellContext`e^4 +
Rational[847853, 1536] $CellContext`e^6 +
Rational[3672745, 12288] $CellContext`e^8 +
Rational[1997845, 49152] $CellContext`e^10 +
Rational[41325, 65536] $CellContext`e^12) (
Rational[46895104, 55125] EulerGamma +
Rational[-438272, 1575] Pi^2 + Rational[46895104, 18375] Log[2] +
Rational[46895104, 55125]
Log[(1 - $CellContext`e^2)/(
1 + (1 - $CellContext`e^2)^Rational[1, 2])])))
Log[$CellContext`y] + (1 - $CellContext`e^2)^Rational[-19, 2] (
Rational[11723776, 55125] +
Rational[1518503768, 165375] $CellContext`e^2 +
Rational[2104761262, 33075] $CellContext`e^4 +
Rational[19414137994, 165375] $CellContext`e^6 +
Rational[8409851501, 132300] $CellContext`e^8 +
Rational[4574665481, 529200] $CellContext`e^10 +
Rational[6308399, 47040] $CellContext`e^12) Log[$CellContext`y]^2 +
PostNewtonianSelfForce`ResummedSeries`ResummedSeriesData[(
1 - $CellContext`e^2)^Rational[-19, 2],
SeriesData[$CellContext`e, 0, {
Rational[4135172387578467141386, 188246062513884375] +
Rational[-492275073631714, 49165491375] EulerGamma +
Rational[46895104, 55125] EulerGamma^2 +
Rational[7606450526, 3274425] Pi^2 +
Rational[-876544, 1575] EulerGamma Pi^2 +
Rational[-8192, 225] Pi^4 +
Rational[-542545799630818, 49165491375] Log[2] +
Rational[187580416, 55125] EulerGamma Log[2] +
Rational[-1753088, 1575] Pi^2 Log[2] +
Rational[187580416, 55125] Log[2]^2 +
Rational[-437114506833, 123323200] Log[3] +
Rational[-7548828125, 8154432] Log[5] +
Rational[-876544, 525] Zeta[3], 0,