-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKerr_quasi-circular_flux_inspiral.nb
5905 lines (5857 loc) · 330 KB
/
Kerr_quasi-circular_flux_inspiral.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 337755, 5897]
NotebookOptionsPosition[ 334131, 5834]
NotebookOutlinePosition[ 334511, 5851]
CellTagsIndexPosition[ 334468, 5848]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Compute a quasi-circular inspiral in Kerr spacetime", "Title",
CellChangeTimes->{{3.738326815048869*^9, 3.738326836326571*^9}, {
3.738422232402094*^9,
3.7384222359240627`*^9}},ExpressionUUID->"b91d6f8f-bf1b-4f2f-b421-\
a68022eb9d02"],
Cell[TextData[StyleBox["This notebook demonstrates how to use the \
KerrGeodesics package and the data in the Black Hole Perturbation Toolkit \
(bhptoolkit.org) to compute a quasi-circular inspiral of a small mass in to a \
much more massive Kerr black hole.",
FontColor->RGBColor[0, 0, 1]]], "Text",
CellChangeTimes->{{3.738326888054344*^9, 3.7383269511236763`*^9}, {
3.7383275579394417`*^9,
3.738327570953094*^9}},ExpressionUUID->"2e381275-6b39-444b-8d72-\
90b3f18a4355"],
Cell[TextData[StyleBox["Load the KerrGeodeodesics package",
FontColor->RGBColor[0, 0, 1]]], "Text",
CellChangeTimes->{{3.7383268503980637`*^9,
3.7383268576300383`*^9}},ExpressionUUID->"ebdf4ab4-758d-4454-ba63-\
799c9af8029f"],
Cell[BoxData[
RowBox[{"<<", "KerrGeodesics`"}]], "Input",
CellChangeTimes->{{3.738321838581746*^9,
3.738321842043796*^9}},ExpressionUUID->"a4a3fcb3-806c-427a-a118-\
7d3cca0e9e03"],
Cell[TextData[{
StyleBox["We set the mass of the black hole to M=1 as it scales out of the \
problem. The spin of the black hole is denoted by \[OpenCurlyQuote]a\
\[CloseCurlyQuote] and the mass ratio is given by \[OpenCurlyQuote]q\
\[CloseCurlyQuote]. We set q=1 here to make the plots nicer but the flux data \
is only calculated to linear order in the mass-ratio and the flux balance is \
only valid when the system is evolving adiabatically (which requires ",
FontColor->RGBColor[0, 0, 1]],
Cell[BoxData[
FormBox[
RowBox[{"q",
RowBox[{"<<", "1"}]}], TraditionalForm]],
FontColor->RGBColor[0, 0, 1],ExpressionUUID->
"a2155e94-c46a-43f1-a498-e9c4c1f181ba"],
StyleBox[").",
FontColor->RGBColor[0, 0, 1]]
}], "Text",
CellChangeTimes->{{3.738327009910943*^9, 3.738327067024177*^9}, {
3.73832710453785*^9, 3.738327170870124*^9}, {3.738327594043744*^9,
3.738327631232813*^9},
3.738344686244039*^9},ExpressionUUID->"fd48cfd1-3a3b-4b15-a07d-\
a048e09f20d5"],
Cell[BoxData[{
RowBox[{
RowBox[{"M", "=", "1"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"a", "=", "0.8"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"q", "=", "1"}], ";"}]}], "Input",
CellChangeTimes->{{3.7383218570670843`*^9, 3.7383218654908953`*^9}, {
3.73832210742867*^9, 3.738322108540313*^9}, {3.738322541943221*^9,
3.73832254202137*^9}, {3.738323764654851*^9, 3.7383237717876263`*^9}, {
3.738326296157365*^9, 3.738326313328513*^9}, {3.738326956459848*^9,
3.738326959067686*^9}},ExpressionUUID->"cd9ef812-7b6a-4947-8eeb-\
57e00b45e711"],
Cell[TextData[StyleBox["Compute the constants of motion and orbital \
frequencies",
FontColor->RGBColor[0, 0, 1]]], "Text",
CellChangeTimes->{{3.738326982470478*^9,
3.73832699019829*^9}},ExpressionUUID->"28b053ff-7899-4445-884e-\
dc88b08e5763"],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"En", ",", "L", ",", "Q"}], "}"}], "=",
RowBox[{"KerrGeoConstantsOfMotion", "[",
RowBox[{"a", ",", "r0", ",", "0", ",", "1"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
"\[CapitalOmega]r", ",", "\[CapitalOmega]\[Theta]", ",",
"\[CapitalOmega]\[Phi]"}], "}"}], "=",
RowBox[{"KerrGeoFrequencies", "[",
RowBox[{"a", ",", "r0", ",", "0", ",", "1"}], "]"}]}], ";"}]}], "Input",
CellChangeTimes->{{3.738321843106063*^9, 3.7383218752829533`*^9}, {
3.7383229237487793`*^9, 3.738322948454064*^9}, {3.750671325039068*^9,
3.750671343294145*^9}},ExpressionUUID->"dbf03c00-b41a-4582-bb27-\
1f8508dede51"],
Cell[TextData[StyleBox["Load and interpolate the flux data (change the \
directory to the local on your hard disk where the flux data is stored)",
FontColor->RGBColor[0, 0, 1]]], "Text",
CellChangeTimes->{{3.738326998720428*^9, 3.7383270023018312`*^9}, {
3.738421661273367*^9,
3.7384216820011463`*^9}},ExpressionUUID->"6f7cd636-89a9-4b66-bc9c-\
8ed60764aca4"],
Cell[BoxData[{
RowBox[{
RowBox[{
"SetDirectory", "[",
"\"\<~/BlackHolePerturbationToolkit/CircularOrbitSelfForceData/Kerr/Fluxes/\
\>\"", "]"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"data", "=",
RowBox[{"Import", "[",
RowBox[{"\"\<Flux_Edot_a\>\"", "<>",
RowBox[{"ToString", "[", "a", "]"}], "<>", "\"\<.dat\>\""}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[ScriptCapitalE]dot", "=",
RowBox[{"Interpolation", "[",
RowBox[{"Transpose", "[",
RowBox[{"{",
RowBox[{
RowBox[{"data", "[",
RowBox[{"[",
RowBox[{";;", ",", "1"}], "]"}], "]"}], ",",
RowBox[{
SuperscriptBox["q", "2"],
RowBox[{"(",
RowBox[{
RowBox[{"data", "[",
RowBox[{"[",
RowBox[{";;", ",", "2"}], "]"}], "]"}], "+",
RowBox[{"data", "[",
RowBox[{"[",
RowBox[{";;", ",", "3"}], "]"}], "]"}]}], ")"}]}]}], "}"}], "]"}],
"]"}]}], ";"}]}], "Input",
CellChangeTimes->{{3.7383219319329844`*^9, 3.738321955154581*^9}, {
3.738322183276058*^9, 3.7383222496484547`*^9}, {3.7383225496454906`*^9,
3.7383225550129547`*^9}, {3.738326995838789*^9,
3.738326995991274*^9}},ExpressionUUID->"eeab259d-92c1-4963-9c9a-\
ae2da96d7690"],
Cell[TextData[{
StyleBox["From the chain rule and flux balance ",
FontColor->RGBColor[0, 0, 1]],
Cell[BoxData[
FormBox[
RowBox[{"(",
RowBox[{
OverscriptBox["E", "."], "=",
RowBox[{"-",
OverscriptBox["\[ScriptCapitalE]", "."]}]}], ")"}], TraditionalForm]],
FontColor->RGBColor[0, 0, 1],ExpressionUUID->
"f3ee7bad-938d-4f34-894a-04d8578497a9"],
StyleBox[" we have ",
FontColor->RGBColor[0, 0, 1]],
Cell[BoxData[
FormBox[
RowBox[{
FractionBox["dr", "dt"], "=",
RowBox[{
RowBox[{"-",
SuperscriptBox[
RowBox[{"(",
FractionBox["dE", "dr"], ")"}],
RowBox[{"-", "1", " "}]]}],
OverscriptBox["\[ScriptCapitalE]", "."]}]}], TraditionalForm]],
FontColor->RGBColor[0, 0, 1],ExpressionUUID->
"d73f7952-a64e-4e89-a416-c6f3f070cb8f"]
}], "Text",
CellChangeTimes->{{3.738326722258932*^9,
3.7383268073999577`*^9}},ExpressionUUID->"e7e5e0eb-927b-4ea7-972d-\
d1ae2cf62c04"],
Cell[BoxData[
RowBox[{
RowBox[{"dr0dt", "=",
RowBox[{
RowBox[{
RowBox[{"-",
SuperscriptBox[
RowBox[{"D", "[",
RowBox[{"En", ",", "r0"}], "]"}],
RowBox[{"-", "1"}]]}],
RowBox[{"\[ScriptCapitalE]dot", "[", "r0", "]"}]}], "/.",
RowBox[{"r0", "\[Rule]",
RowBox[{"r0", "[", "t", "]"}]}]}]}], ";"}]], "Input",
CellChangeTimes->{{3.738321878578326*^9, 3.738321927045372*^9}, {
3.738322829170336*^9,
3.738322832835397*^9}},ExpressionUUID->"effc28f2-fb17-47d0-ba4e-\
12f7f5177530"],
Cell[TextData[StyleBox["Solve for the radial motion",
FontColor->RGBColor[0, 0, 1]]], "Text",
CellChangeTimes->{{3.738327186669715*^9,
3.7383271893404016`*^9}},ExpressionUUID->"b4a11cae-e57c-4b1a-a07f-\
cad466025063"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"r1", "=",
RowBox[{"r0", "/.",
RowBox[{
RowBox[{"NDSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"r0", "'"}], "[", "t", "]"}], "==", "dr0dt"}], ",",
RowBox[{
RowBox[{"r0", "[", "0", "]"}], "\[Equal]", "50"}]}], "}"}], ",",
"r0", ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",",
RowBox[{"2", " ",
SuperscriptBox["10", "6"]}]}], "}"}]}], "]"}], "[",
RowBox[{"[",
RowBox[{"1", ",", "1"}], "]"}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.738322717593314*^9, 3.738322905536303*^9}, {
3.738323115541827*^9, 3.738323116405652*^9}, {3.738323232414102*^9,
3.73832324503176*^9}, {3.738323485429606*^9, 3.7383234870516787`*^9},
3.750671393360828*^9},ExpressionUUID->"a9ac3038-8dbf-4539-bcb8-\
1683965448a5"],
Cell[BoxData[
TemplateBox[{
"NDSolve","ndsz",
"\"At \\!\\(\\*RowBox[{\\\"t\\\"}]\\) == \
\\!\\(\\*RowBox[{\\\"125842.60519981498`\\\"}]\\), step size is effectively \
zero; singularity or stiff system suspected.\"",2,22,6,17147613433038272466,
"Local 3"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{
3.738323245732284*^9, 3.73832333295868*^9, 3.738323487570147*^9, {
3.738323570358803*^9, 3.738323597542745*^9}, 3.7383237871206408`*^9, {
3.738326303045656*^9, 3.738326315850267*^9}, {3.750671365736717*^9,
3.7506713936648617`*^9}},ExpressionUUID->"ced23dbf-8f93-462f-bbab-\
e9a0048617cd"],
Cell[BoxData[
InterpretationBox[
RowBox[{
TagBox["InterpolatingFunction",
"SummaryHead"], "[",
DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"},
TemplateBox[{PaneSelectorBox[{False -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource[
"FEBitmaps", "SquarePlusIconMedium"]],
ButtonFunction :> (Typeset`open$$ = True), Appearance -> None,
Evaluator -> Automatic, Method -> "Preemptive"],
Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic, 3.5 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1]],
LineBox[CompressedData["
1:eJwVyn04FAYAx/EbHi+PVS6PzMtTTY1dLDnRkeN37zdNTQ15PVw8uZm3bDHk
yT3Jy6rFsLQebYe6Zk7cHvLSsO2Yte7IFPNSdHFe5rxdhbtb++P7fP75vhub
fDzOgEAg+Lzpf6d2uN4hZsb4PbQ/pNPrudho8No6a3wTSwLZqRolF5oLVz/I
aGqAuV2wtbSXi9x58m0bRQt8s8XlgT9xQXcQp+tjOsHafyNnVwkXAn2vwKvx
N1TIp6Mo6VzYeumLult6QUz2PzUfwoVa9Duh1OovmFLyivspXHQLlXUGEgX8
Qnr9B2y4UPDPJPHrB8DTToiyNjlIjfhjZPrJIL7Q/Fh6YJSDYOG+0dLxIQTp
3xGUdnBQ6egstxh5ArcGt3j7qjf/5EriXcI/sJN7dl/M4eCrBz1VmQZjkH6S
4iSJ5MBbzs+Jc53AjPDY8TJvDvbcOuZIFD9F6s7LZKE1B39q004a3n6GBCtu
kY+GjY7odd7F9knwdRbXc/vZ6A8zIVfdn8LnbYOepfVs7I/JGOYOPUfGx+d2
Gxaw0fbevdcjM0pkRSYK+DFsCM7nPieoXsBpMSSr2oeNWJW4ukU3jceZ357Z
tGQjeybU1chAhYfltINeCyzIaobJFMIsDGMpfkkyFkKTO8x1lnNQXK6OEFxn
YavCURJiNY/ZxIqCsDQWtlBXnRguCyAdIeT3MVk4fPqqjbXvv7B3brdf2MFC
8T7p3+eoi1i2bVnZPsdESfYNdx+SGgPBFuXsViZSJKJneXfUCKLa1mQVMxHf
RXxAJS2B+hlmeBFMnB92+76rcQmyiQ5ajxMTLh3fhG9zX4bzNmEaZY0Bba2Y
4Hh/GZtmG+y6dgaiIt4qNsYKWlpbA+3zGXis7gwM/2UFetMKo6GjDKQXkw0z
P1yF76Oj2mYLBkRLL65F960imZz8XeEgHZrIADti8BpEF4wGJV/TESu2G/aY
WIM0rqRozxE6eJ0u2Xt5GpzwpKsjTOjIHVs0G1Vp8LRa3B7WSsMB2Vp25Kcv
kcIvz/s1iYb1S3yXE7MvQSup7+vaTYMqXCgjpr+CY2WZ4v0e4PSaklW5+gqm
Y48OeiQBW8rWJXO5r3GluelLnTHQa3k2+K7pOqJTB8bN3f1gFeU5iYJ1JCx+
5BYS5Iv8+lsnr23fQH5ZYScvgIrCvnBpW+kGzL1+kDgd9kHDfNd67a5NTCkT
VW/PekO9cCXHWLwJu535e0fivdDVelPpStKi2cFAkNh4CD9f4lMcpFrYyEPl
BQEe8HZJSBn30CGgbsayatUNmWdJtaR7OvibiZoulJjgPw0kyC4=
"]]},
Annotation[#, "Charting`Private`Tag$2101#1"]& ]}}, {}, {}}, {
DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}},
GridLines -> {None, None}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.1],
Scaled[0.1]}, {
Scaled[0.1],
Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding ->
All, DisplayFunction -> Identity, AspectRatio -> 1,
Axes -> {False, False}, AxesLabel -> {None, None},
AxesOrigin -> {0, 0}, DisplayFunction :> Identity,
Frame -> {{True, True}, {True, True}},
FrameLabel -> {{None, None}, {None, None}}, FrameStyle ->
Directive[
Opacity[0.5],
Thickness[Tiny],
RGBColor[0.368417, 0.506779, 0.709798]],
FrameTicks -> {{None, None}, {None, None}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize ->
Dynamic[{
Automatic, 3.5 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}],
Method -> {
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange -> {{0., 125842.60519981498`}, {0.,
49.99999978724519}}, PlotRangeClipping -> True,
PlotRangePadding -> {{
Scaled[0.1],
Scaled[0.1]}, {
Scaled[0.1],
Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}],
GridBox[{{
RowBox[{
TagBox["\"Domain: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
RowBox[{"{",
RowBox[{"{",
RowBox[{"0.`", ",", "125842.60519981498`"}], "}"}], "}"}],
"SummaryItem"]}]}, {
RowBox[{
TagBox["\"Output: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["\"scalar\"", "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}], True -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource[
"FEBitmaps", "SquareMinusIconMedium"]],
ButtonFunction :> (Typeset`open$$ = False), Appearance -> None,
Evaluator -> Automatic, Method -> "Preemptive"],
Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic, 3.5 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1]],
LineBox[CompressedData["
1:eJwVyn04FAYAx/EbHi+PVS6PzMtTTY1dLDnRkeN37zdNTQ15PVw8uZm3bDHk
yT3Jy6rFsLQebYe6Zk7cHvLSsO2Yte7IFPNSdHFe5rxdhbtb++P7fP75vhub
fDzOgEAg+Lzpf6d2uN4hZsb4PbQ/pNPrudho8No6a3wTSwLZqRolF5oLVz/I
aGqAuV2wtbSXi9x58m0bRQt8s8XlgT9xQXcQp+tjOsHafyNnVwkXAn2vwKvx
N1TIp6Mo6VzYeumLult6QUz2PzUfwoVa9Duh1OovmFLyivspXHQLlXUGEgX8
Qnr9B2y4UPDPJPHrB8DTToiyNjlIjfhjZPrJIL7Q/Fh6YJSDYOG+0dLxIQTp
3xGUdnBQ6egstxh5ArcGt3j7qjf/5EriXcI/sJN7dl/M4eCrBz1VmQZjkH6S
4iSJ5MBbzs+Jc53AjPDY8TJvDvbcOuZIFD9F6s7LZKE1B39q004a3n6GBCtu
kY+GjY7odd7F9knwdRbXc/vZ6A8zIVfdn8LnbYOepfVs7I/JGOYOPUfGx+d2
Gxaw0fbevdcjM0pkRSYK+DFsCM7nPieoXsBpMSSr2oeNWJW4ukU3jceZ357Z
tGQjeybU1chAhYfltINeCyzIaobJFMIsDGMpfkkyFkKTO8x1lnNQXK6OEFxn
YavCURJiNY/ZxIqCsDQWtlBXnRguCyAdIeT3MVk4fPqqjbXvv7B3brdf2MFC
8T7p3+eoi1i2bVnZPsdESfYNdx+SGgPBFuXsViZSJKJneXfUCKLa1mQVMxHf
RXxAJS2B+hlmeBFMnB92+76rcQmyiQ5ajxMTLh3fhG9zX4bzNmEaZY0Bba2Y
4Hh/GZtmG+y6dgaiIt4qNsYKWlpbA+3zGXis7gwM/2UFetMKo6GjDKQXkw0z
P1yF76Oj2mYLBkRLL65F960imZz8XeEgHZrIADti8BpEF4wGJV/TESu2G/aY
WIM0rqRozxE6eJ0u2Xt5GpzwpKsjTOjIHVs0G1Vp8LRa3B7WSsMB2Vp25Kcv
kcIvz/s1iYb1S3yXE7MvQSup7+vaTYMqXCgjpr+CY2WZ4v0e4PSaklW5+gqm
Y48OeiQBW8rWJXO5r3GluelLnTHQa3k2+K7pOqJTB8bN3f1gFeU5iYJ1JCx+
5BYS5Iv8+lsnr23fQH5ZYScvgIrCvnBpW+kGzL1+kDgd9kHDfNd67a5NTCkT
VW/PekO9cCXHWLwJu535e0fivdDVelPpStKi2cFAkNh4CD9f4lMcpFrYyEPl
BQEe8HZJSBn30CGgbsayatUNmWdJtaR7OvibiZoulJjgPw0kyC4=
"]]},
Annotation[#, "Charting`Private`Tag$2101#1"]& ]}}, {}, {}}, {
DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}},
GridLines -> {None, None}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.1],
Scaled[0.1]}, {
Scaled[0.1],
Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding ->
All, DisplayFunction -> Identity, AspectRatio -> 1,
Axes -> {False, False}, AxesLabel -> {None, None},
AxesOrigin -> {0, 0}, DisplayFunction :> Identity,
Frame -> {{True, True}, {True, True}},
FrameLabel -> {{None, None}, {None, None}}, FrameStyle ->
Directive[
Opacity[0.5],
Thickness[Tiny],
RGBColor[0.368417, 0.506779, 0.709798]],
FrameTicks -> {{None, None}, {None, None}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize ->
Dynamic[{
Automatic, 3.5 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}],
Method -> {
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange -> {{0., 125842.60519981498`}, {0.,
49.99999978724519}}, PlotRangeClipping -> True,
PlotRangePadding -> {{
Scaled[0.1],
Scaled[0.1]}, {
Scaled[0.1],
Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}],
GridBox[{{
RowBox[{
TagBox["\"Domain: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
RowBox[{"{",
RowBox[{"{",
RowBox[{"0.`", ",", "125842.60519981498`"}], "}"}], "}"}],
"SummaryItem"]}]}, {
RowBox[{
TagBox["\"Output: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["\"scalar\"", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Order: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["3", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Method: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["\"Hermite\"", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Periodic: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["False", "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}]},
Dynamic[Typeset`open$$], ImageSize -> Automatic]},
"SummaryPanel",
DisplayFunction->(
ButtonBox[#, Active -> False, Alignment -> Left,
Appearance -> {
"Default" ->
FrontEnd`FileName[{"Typeset", "SummaryBox"}, "Panel.9.png"]},
FrameMargins -> 7, BaseStyle -> {},
DefaultBaseStyle -> {"Panel", Background -> None}, BaselinePosition ->
Baseline]& )],
DynamicModuleValues:>{}], "]"}],
InterpolatingFunction[{{0., 125842.60519981498`}}, {
5, 7, 1, {322}, {4}, 0, 0, 0, 0, Automatic, {}, {}, False}, CompressedData["
1:eJwt0gs01UkYAPBLntndkCKSlDxbpJLlLp9Hkb3k1RORrBBRKNpIhTxWq24J
e8tjvcWNVAi1q1KUkseKJEmUt01e946d+f+bc2Z+Z76ZM983c0bZI8DhV0EG
gyGAuxkZvjXuTOtj4SpToLX/5gEQCTEpFLvq+21+FPRufVGIF/4DRKl4Ghha
ma3NbcuCiTbPiXq3fPA+nQz8nVUwvP1nCwnjh6DipDMoa98I2lzJbdJ6zWBd
Lp6Scq8VZCrtLe6YvobumtTxlvpucOwNbJpR7YWKvsvZor59oPix4uTy4n44
O/jGbt34AHz8zFDbtPEzzNx22hshNgyLz+QnPOkeAQUWr0b61hgkS6iHaj8c
h5Xbaib9IiYgM9LBv8hgEtTuDQx8mpyEG1OnPNSL/4P7yTub8uELNG/RNtRo
/QJ9HSK5BYemYCqsR0pzfgoMe4eCJgO+QoTVTFvVh69QxxUyOLd3GsRkpdJ+
aZqG9/tLWPc1Z6A695cFvfMzkDw6WJrbNwOB+jGe8jALLPCP2B43C2rWTimh
r2ZhkZNRWZ7CHLx1XfOs3XMO6vuDp+quzwHXv35VacccpEytsLouPQ+R4X5H
E1jzEFc223rw5DywB2IMmPnzwFkpw5Fpn4cc+8yF4UU8iBwbzNukzoN9ibp2
p1g82KwVOlMXyIMlT+9nSFzhgddZn2sPSnlQY7Q0LaSJBzJT1cmaQzzwK/Fi
94jywdAms/XKKj6ID3ctY23mQ0f88t2CLD7katinVHjwYcWYNeIG8yGh3MIz
L4YPKMy44XoKHwJNDHSTC/lwrJIv/KyCD8Eb67oE6vlwvDi2dEsbH0LVbM/7
9/FhlRbbuXCUD4+0O3QGZvlwWE9RSEUYgbS+R4e7JAIF0/gQ8xUIVFhl0qpr
EGjv7uSKaSHY4iFoM7QRwc+SET4ThgjMamejp00RWPmFZPGtENjIT9QuskOQ
rMXsSdqJ4C3z/IKiMwJV21dKRe4IjrgpgoEXgsQdJpp/+iIoMjkgg44geKpz
DrkHIRhQyhmsO4Fg/uDDKcPfECzJ7xMsi0CwdlhQUuMsAgPdNYoZ0QhSTwxl
u8QimKstX78iAYGzSER5WyKCahtL5qUknEfusPW9SwiU+y7s+XAZQUtxmdf3
VxHEhLYH66ciMO/UHP2chkCAefpQOgfB/Wst7xyvIzi1oLZPLAOB69ZYrnsm
AuOEQaHKLARKzVb7pLIRMGQLuD45+N4PduqH5SI45yNYE5uH4JE01zwlH4Fo
tXNDXgECMfuiZ+GFCMQ/zjU5FiFY/Jt1s8YNBBKSaS0L2ON2Pd75xQjeJ6kg
uxIEts0+7FlslRRXPYuLQMRU/Z3qTQQOgZlXi7Dp6fI7dEsRDDWxRW5jg2dr
jiiWIUBrB9ujsbG20iajWKkwZt6uWwi8hyYr8rEPXAsa5rCyL93esMrxu5gt
H72ObVR3PdCDVVuS3ap0G0HU1GdLd2xv14Z7GVjJ4w7WLVhjyaDXwncQ+Bey
vQ2wHIvyaV/svui9ly9h5R4j3Spsu0j2817sZcvtvuJ3EcwEnj+kjnVJe+Rp
iX1Qt8jDC6sl+1InEnvFl8NPxTJqvRtvYQ9LbU59jj35Ou5FLzY+863wV2ya
z0bm4gr8bkqiogrY8NbOZi3saFwJh4n9PaQ32RqrcUDm4h5sPcsywQvby8xY
fwzLWz/7PBwrq+gQEIc1WuDJsbHuvXn/cLBRdQ5+udhrHi8CSrB3BVhBd7Av
M54cr8W6BHPlHmE/WSZXNWJDFMJdXmFTeez2f7E13YV23SRf7d8N77HgXWoz
gE2Xynw5hEVVSY7jWG0HR7EvWNdPy2qmSd2RHUfnsfvNR04irI6IYJRAJf6P
T5cnCmF9dkeJimJf9U+cEccaBbvxJLCdFb8zfsCG8SuFJLFyZgNi0th1DfZF
S7EbHaptlmGhU3V8OXbzCZ6pHFZT5hV7BVapNK9fHlu1zWpKAbvrzaCQInby
aJzMKuwDwakR4h9s93ol7H6VZxmrsc6HGLbK2D2Fm+aJTiPe+Wuw8rKlG9Zi
e2C2ipjja2qhgm2yPnmT+FXz1sp1JK/EcCxxXr+2m9jukaSnii274HGeyFwU
/JT4+ES0hBo5J93PjBhV7xhGPDhmeJO4QfLPLiJjw7yIOrZ895gm0Tuiz5ao
kPPvMeJa174LRK1lY4VEF7fpv4mJBQsdxNr/RMeJTjvqBTSwnwpjlhLf6H1R
Jr6oOqBLtFjtzCRWRjtZUXM1Ewdq/YmGC5Gl4ORJbPCP8COeMdQJIhqIvgsj
BsjvPE3M+7EhitjrYBBHXBmam0gsijK8SDS82HSZKHWq5CpxwOtCGlHcqJND
1Fqimk68XzOTQXT0a8wicqKMson9nKIc4rmRxlyisvFwHlHS41k+kRFzo4AY
67a3kIr/JFJELHCJpzSP/OEGXccxSr2sdsryLOViov5ffpQGP2VTGr3oorxy
WqiEOKbzI2VLkjVlxcQhyr/aTlEmVl6kdcygHSmh7BqroNSY/IfyTt5TSnPX
l5RlQbRr4mkvZtAy7tIGPKe1naNdr9ZMKeFEWy3TQunf1kqpmNxO2bSrg3Lk
YCfld0ffUG5d/ZayJKaHUnbkHaXmh15KZtd7SuOIPvqeQh/oeABt4GPaJ9/1
U3pvpeUcoz2STMsuow1/QuvxmtbiI+3cGK3e9Ld9PFpbxkfK/wHlMV14
"], {
Developer`PackedArrayForm, CompressedData["
1:eJwV0wFHHgAABNCWJEmSJElakiRJkiRJS5IkSZIknyRJS5IkSZIkSZLMJEmS
JMnMTDKTJEmSJEmSJEkmSbLX8e4X3H0OfK3u+BQUFPTloySYEEIJI5wIIoki
mhhiiSOeBBJJIpkUUkkjnQwyySKbHHLJI58CCimimBJKKaOcCiqpopoaaqmj
ngYaaSJAMy200kY7HXTSRTc99NJHPwMMMsQwI4wyxjgTTDLFNDPM8o3vzDHP
AossscwKq6yxzgab/OAnv/jNFtv84S877LLHPgcccsQxJ5xyxjkXXHLFNTfc
csc9DzzyxD+eeeGVN94JsoFgQggljHAiiCSKaGKIJY54EkgkiWRSSCWNdDLI
JItscsglj3wKKKSIYkoopYxyKqikimpqqKWOehpopIkAzbTQShvtfIy8ky66
6aGXPvoZYJAhhhlhlDHGmWCSKaaZYZZvfGeOeRZYZIllVlhljXU22OQHP/nF
b7bY5g9/2WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSf+8cwLr7zxzsf5
gwkhlDDCiSCSKKKJIZY44kkgkSSSSSGVNNLJIJMssskhlzzyKaCQIoopoZQy
yqmgkiqqqaGWOuppoJEmAjTTQitttNNBJ11000MvffQzwCBDDPMfy2CTRA==
"], CompressedData["
1:eJwt03c014/3B3Ajve29Rfbee8W13xJJGak+UYjIrKxEA9mrUmSXykhDknBf
hLKSUT6fSIpsUcgofN+/c373v8c593nuufecK3YiwMGTmoqK6ioN1f+XNbhW
CNxclRLExS1H/uRtMoiV/FBzlxHE5ApveX6K/yV5/OmQFcSio3SmqltkSFpD
2gIFQeRITgHyJhmeLa01hygL4rvxDSm3v2Sgf+SiZ60miKVju59aL5GBi7or
8I2tILKD/CG5GTJc/SUfmHpaELkne35tjZLhSOTfowXxguhTaH62Y5AMnS3R
J//cFUQRbSktiQdk8Bg1NaoxFsK9ncOLJ0LJIDUfc238mxDqn0thjrAgQzMT
B41l2i70GflyzZmTDNyZWg5PLYTRawfP+6nPVnCUVp9amCSCfeLNPB9uWYHn
bOO8IftutBQ58t3+gBVk4aTBFz5RHAhrUpQmWQHTkd02btWiuCBUKcFXZwmx
pUb8l46LoZLNSNmwjyXsCHa4HSckjv9Y+ZhL8lpCaGwkt+6sOHIx7whOabSA
ndfor+3sk8DQ6J5ffmctgCyuM7BaKImmHfbhqjIWIPGi1KPpqhT2xX/wjv1o
DipzVQNjMdL4V9i/i/GyOexmmiiruy2D5wt7rf4YmIO+Hm1DWbosMoxVta//
MoM7d7NtEgrlMPvL3q8vSs3AVtfJL6FbHtVO5577z8kMZPs6fb/vUkTDcY9P
BLcZVNC2WyuaKaHmi9SC0R5T0DOr01GKV0aWpJ9PfsSbQlBp8YeZeRUM33OH
97qhKaScfbH9vlEV7U/cuW64ZQIsh8OPSPmrIW9z4BOLBhMwvu/kpqaijrsm
O6/4hJuAxHRm/88dGqgjvfjLUd0EtpiezYssaSBporchYRXA8THXOZYWTQwW
tJU1rwMgM4b/J1imhfY9wzpmEQBXr32UGXygjcVhrwL1dACiPixxP23RweTY
2R+J28YgaqZeWtWgixZaViurScaQ7WylN9Sjh7IXLvju4TIG7Vfvis9u6+Pv
c2Ws7deNIKiTM6/tgCHGpRIKaopGoPkgfzsuYg9OBIUsquEeGE/wZbZtMsIT
/ocHHG33QK1vs84NHsDQm6adnB8NoVd06InOF0BTpq80gSGGkOD1OoUj3QTz
ozSIe8yGkOaZ39nrYIoe4pK8FkUGMBI3c+2ivBmaHbSr7VQ1gNGsJvphQXP0
457Uf9uvDwlMLYrl8+Z4qeW/+P+C9WEQdhr3f7DAxKz2+Zss+vA+Ou/vwkdL
TJicCogt0QMNizzlmBUrfP/Xx/a9jR70VGy+6Vkko17n+ID3oi6cOsH89Abd
XuS0SdKeS9eFQtr+U6K6Njgxd+jIhKIuvG22SO9O2Uf5l2o9jU86EGheY3vm
pS1eWRo8Q3tVB8otgyf8aPdjh5Vv9bqcDiz49GqF6dpja5592INObXiac+an
yo4D2EzuOVgVpQ39+z4W99YcQNW/BQp+itrga1fLnBnpgOljZWtxg1qw037w
82XHg5jQmGR966IWUCs6HAolH8KkI47aPFpa8KRV0O+CsCNmmhFzoVOaQG72
WhCld8KfhkZOZ25pwvMDAUpszM44Nm3TlWWuCbV6tgP/Krng6RHBesttDVBc
viI2pXAYH+6RymJ+oQHi1kbcbWauaH2DevymrwZstL9N6A8/gtT+xtEJuzRA
c+gnKa7/KD5MSWDUHlKHFj6ezQyaf3BvgyanaLY60CRv3vezP45SEfdTN/er
Q4ZUZJmsuxs6VYaHhdKpQ+N5ut0nVdxx5d9vZeNv1MDkyX5umXF3hMSwpBfx
alBxSdt3f/kJlNn6pVtmrgYBn+ji/safxCWSd8LpLVV46bXRxn3RA9+Vrz4+
0aIKMyHpk68dPVG2RT1sIl4VxDgnRU+beeHONPOpZ2RViHfR9mzZewpfupzz
j9qpCt/cbaouBHqjuVffSG6BCkzJ6N0ZDfLBjUyq1lwlFaj78rPqUspp7P36
ke5ijTLcHAoO+veNL3KutEo91lMGF9OSfeHSZ5C2PzW0uE8J6m2afR8f9sd8
WcuDOqeUoL/ArdakIgD5tNdk138rgvLnAzavMwJRhptUduySIhSK/LDlPRmE
Ho8nAq1EFcEkr3LwvGAwyoj3l3C9UoCIGf6xrPFgLKDdTz54QAFqNVg2C1tC
cMp1o+3KN3mIV9IoyWs8i2pWdzzY4+Vhn3Xmoazb57DY40zrKxl5sKe3LFxI
PI+cXTulhVvkII/t6Vz8zVAcKvHUeXlEDhx6L9lIN4Uhd2UT3W06ORhQzJot
bQtHrzKD2+/LZSHE+vrKz4kITHauZN60lYXk02S1AukLuLLA+PPhrAzUGUiJ
+SVFYZpGIm1mjgyUJia87H59EYM8JF6RLGVArDL1kAhrDDItuzVUzktDD0uM
gnB3DHqp/+LnzZAGpbEd8YeKLyGJOoSGMJeGC5aaestHL+NBFboY+RUpuJcW
Jt8sfwWh0jVks0gK3mrbpzOxXcXJ+zHMvXuloPlR2tufLLH4OHVn2QaNFHA1
X731dy4W29KP0fPUSoLwR4/MrW9xOHGp6E+XjyS4H1Hh+bEUjyKGYRcJPkno
UxL4QEgmYMDnZ28UBiTAZji17aRKIoZaGvs8T5EAV+OTjAmOSRjtFznOai4B
/uf4h3/lJuObTMPKod/ioOugy5VNn4pFG9qJdi/EocKD2eyMVRry2wnNM54T
h8LG2oi8g+kYVv3xdZuKOPhNCykO82ag4qRUlfykGKBNoh39zwx09Jzs8y8X
Az61uXM1VZn4Z830tNQZMRDcF88uezkLLy0aZtErikFmdAx2+15HngGZgdZJ
UXjyck1xLfAGHsfUOw+qRIHn9ctFQcebWFgjXyV5ThTCzztJLtln46tvr8XW
dESB/cBRrnvet5DzVJBB2cJuuMMVtX2y6DbGDqUu2sXtBmq9N3ynn+agrcAP
+kB+ik95Onz/kouJsow6GfdEQPoNTWG/ch7GLc5m71YSgdsR2lqR9/Ixg5PP
aF+HMPTdYeC1nyvAdDGzOIOTwqB5Mcf8YVkhph1jtw5b3QUvnSNszUOKUGYX
25/QuF0wXO3u+fpgMVqEtMkNy+2C8O5u5wC+EoxuZPlt0S4Eu+mmB+8ulGDX
ajKdlYcQTB2XiiSN3sUib7e6oxuCoPTtkZrS/D2UNGyrelQiCGLx3TfiBkuR
cTrO0tJaEFakGpszP93HjPn7Ba9mBID3ssFq7cYDfPFYxuHKLQHQCHI+1bej
DP0r82tbTAWA7YpqwKJ8Oa56+T4TnuYH9YiO85zBFbi83L8lkMQPQRJso/Gj
lcgEQ5fZjfgh/CPDOy3RKrRbVr75fJ4PWpp2Rc7BY5xofPa3/DYfbMg4GLTT
PcE/VVy9jfZ8MCZVL+L06glu+H/ieryDDziqf+UoXn2K+r9immWe88JQqPpk
+8lnGKAfH0EbyAtHD1DHB6hXY/ejI6WTMrzAnVEzK8T3HM2cr2TFDPOA09yw
fC9PDeqviomt5/DAqbyLWzrUL7C+STWzyIkHzq3mKn6gq0Xpr/IS8mw80KLT
6EWWfYlPF7oGpHq5wXl5OfS8Zh3GzFzD0HRuIH2kFYk79go9/MXm+vdxQzHf
hyM9D+qxLdbe1ZCTGzaWepicPjXgo5bAANEPXJBFb8i6poiYXGrzXecGFxiO
f84OPkigZFWS2toxLuAxPDh8gboJO+Q0a10kuaApwzj7anMT6pZFdXBPcUJX
X8Qx0ZxmfBitv85fzQnd0++yfd1e41Y/nfDXKE7QaTKWjTVswe9DjHSKFpxg
/Y/nzC31VuwVEol14+YEs9zu8VTuNqQ57vEx8isHNJNnD91ke4MnjL8rQAUH
SGqkVCfJvsWp21+OZlzkgKyeUD9B+Xak6T5vP2vHAfsfHaeLJXdgxJcDl7mE
OSBjnGYsPKET83cn6J/5xQ7NIx6hSlVduHcHX9liKzucjx+9K/u7G7dZQ8K8
stlBsjXgGrdnD14zeZH5LIAdXjhJyO1yfY/G0yTLvZbsIPthMnmKuxdLGVmt
fguyg1M1V/yniV5Umk28DHNsQN/luGFU2oe9xya4PQvY4J0e1E9H9iMV1Wr8
qh0b5NDRPY70G8AD/MELA4xsYMYrt3LU6gPmSZsNNrxmBY31K1sihh+xSTaU
zzGcFaqHniQb2w/igMIFlmv6rLDu/0NhY++/WKYVWbW1xgJbitZLIyf/wzDc
LelezQKksrZ74UWfUOuKj8TTCBZgc3Q3IDcN4bXXEyIXjFiAwzLf4sSOz6ik
PGXmt80MLrbYVBA8gu1ygW6FHcxQMH76QV/DFxx8KPohOosZqIc09Ixvj2KZ
2FRK/WFmSGtftmc68xW9mj2mb8gxQ8/tOHclxW/4Ytll3XqVCbqDzIQ6aMdQ
PDVKLK2ZCWZHL3/NXR/DpE2m5O6bTGBta3x57eM4Lm78YuDyYYKInPQ0t97v
GK2pqi6oxwQWfI697xcmUD1OYTKSgwnmhpuuqfycxAv1ObtZpxihceezFk2e
aVQTOOmRVs8IohxKR855zKCauFV/7y1G2OZIDN1Kn0VFjpXjviGMwHND4siu
yTnktL5hJbKPEd6N5QT5Bf3AoLW6T1sKjKA722XH1LeA3+v+BLoyMsJOXXOp
wKeLOLa4R5l7ngE+/xHYnx30E4PlTO4EvGOAirDCnW02v3Arz65Q9xEDVAb5
27CQlzBewSolKosBcuuqB74qLePvrc/5Z0MZoKUoIW1ZawXHCqKzeY4zgJzQ
HupQtd84/TOciLdgAJdGJ/1TDqu4ejkpI1eeAZh524+JlKzhD36y8iVuBji2
qLjLamAdZ8TlFaw26YH7k0u7u9YfXH9PtBlM04PkzzqVxat/0Zuxo1xxgB6U
JvxopBi2cMPzScOPBnooPS9Xf6Z3G2Ofq7T8V07pp3ul8LCGinB/5S397hY9
BEiFqQ2XUhNPzlcJRV+jh+1LDr/zE2kImkfqzg6h9BBhoterc52WiFV9vM/W
mx4u1OYff3RjB1En9ud7qAs9qF2QFZhtpiO0WW72FO+lh7mP/qecJ3cSMmyl
xxgM6eHkSIVhhxE9sefJHVFnFXooYyvjSkxiIM70B6fPidFD8dfkogEuJqI2
QLNkHy89UAsXdsSkMRN7BMSYqBjpQcpTWHHYnpWI1+Xod9smQXTXElszNTtR
edidUXSZBO7vR+zod3AQro944gJnSPA0gMHl5SYHEbmZsSk3SgIFtf2DhAwX
UUWdu8N1kATMHibHnltxE2I1Ayyb3SRYsN2s3C7kIXKtH5tstpJAYrs+8tQP
XuLNs6Ct8AYSSM3V/5GN4ScGTKnRoIaSrzm12kcrSPRp53JfeUSCoqjnqd7/
CRGjzPsj1u6TwOFRoYB6vjCBdx2Z/haSYPOo971XrbuJRr9/vvHlkuDW6+dn
M+ZEiTujdxg6rpPAsfwsv6y6OHGdp78rOo0EzS+9FXN9JYi6++vZ/QkkMLrI
J6j0Q5KIOZ/qyxdLgtevpFZpT0gTDNUVN6hiSPAunW+mTUWWiPfsNnkTSQL7
zS27xFk5Ije5RUk/lAROzw1WCF5F4gshJhAeQoK8M2vp7xWUiRqbP52nA0ig
dPjQBp+XKrGc5f2bz48EP6a1xxMeqBHp3J0cF71JUH2rQHLEVIOQ25phTfck
gfedN8FUXZqE9/O8TrcTlPuN1NyVa9UmjDXyG94dJ0GSUUpUzgNdwrlfeILq
GAmOuF2RidxlQPQ0pYU1u5Jg0j7St+TsHkJotvGkrQsJyoLV9zwzB0IoKrHN
1YkEjA0vYlUbTIim31EO2odIkN/6LjH7qRlBKlrXvOZAAt681dacdAtC5/h4
U4U9CcRU6YzaecmErh2nneF+ErhK7GRYjtpL8Lc6vCy2peQtWI+97bQlRs7b
pPnsI8GQervLdKg9Qeecp8xkQ4KCf57J3Ch3IC57abrR7iVB4MKQ/fXmQ4SA
D9vmf2QSyE49p6dudibieb+//0Bx3oBw26l3zoSMa0pxL8U1q4O8A5+cCeU3
O4K7KfZdlvx1cNKZeDtpZdxO8UWFyKTJJWdi0/AgYyvFWjfZ+NKoXIiukcXc
eorH09k5uAVdCAOWVMlqin1iC4RmNVyIjOcsd8spZshdWeGxcyHixPJTD1Ec
ka3Q4HPqMGHaoOC8bkWC+QU5xroyV2Jzdtj5NsW2C0uM+RJHiQEfpZcaFNP4
dXXWfztGqNjYSlZbkqBT93hqqaYbUVyfVitL8fxMPmPHJ3diVKjidpkFZf8L
WfOSZSeJH7czBXQotn0tHOJU6Umkfwp2qDEnwZKCMQ9zmDexXks15UDxxQum
Ms8UfIlPk9p0Y2YkyLksV5q9M4AYi/qQkUbx/ks5jYcPBxElFQ/9TCmmjUcL
usgQwj9QvG/TlATZ8QJXqkbOEVQLqiWNFJO1I2PL7ocRB9l6eGMpPvftyYPu
sUjivsGVLHuKa2g/K3x/FE14yUQNiVJM/ewflaNcl4mrZqx3Vkwo89ddC4Nf
XiXaTMtT3lGsWh3dU/Qtnqjqk/Ypp3jvLd4406okgsmjfiaJYslIUCEk0wll
Ge7eAIo1jDVVkpYzCbsn0Z+dKO6z8HAl+90kJli/9APFh88UHY9rzCGE+gsi
lP7PVQUZAfyFxGpxTc4uiluT7RddMkuI/wEUSGfG
"]}, {Automatic}],
Editable->False,
SelectWithContents->True,
Selectable->False]], "Output",
CellChangeTimes->{
3.750671393681044*^9},ExpressionUUID->"2cc1bcc5-94ed-4e46-b5b0-\
992642843b22"]
}, Open ]],
Cell[TextData[StyleBox["We let NDSolve run until the step size drops too \
small, This happens as the particle approaches the inner-most stable circular \
orbit (ISCO)",
FontColor->RGBColor[0, 0, 1]]], "Text",
CellChangeTimes->{{3.738327195604113*^9,
3.7383272613619823`*^9}},ExpressionUUID->"54553d8d-f437-43e8-b2d2-\
2321c77a18db"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"tmax", "=",
RowBox[{
RowBox[{"r1", "[", "\"\<Domain\>\"", "]"}], "[",
RowBox[{"[",
RowBox[{"1", ",", "2"}], "]"}], "]"}]}]], "Input",
CellChangeTimes->{{3.738323246935267*^9, 3.738323267534884*^9},
3.738323494995264*^9},ExpressionUUID->"4dc4c44b-3096-495a-8cca-\
352eaf0408f7"],
Cell[BoxData["125842.60519981498`"], "Output",
CellChangeTimes->{
3.738323495315076*^9, {3.738323570979691*^9, 3.738323597674818*^9},
3.7383237876064672`*^9, {3.738326303402755*^9, 3.738326315995816*^9},
3.750671366865862*^9},ExpressionUUID->"4bd87b2e-bd14-418c-b04f-\
cc1536c05813"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"r1", "[", "t", "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "tmax"}], "}"}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Detailed\>\""}]}], "]"}]], "Input",
CellChangeTimes->{{3.738322851770658*^9, 3.73832290022418*^9}, {
3.738323235949951*^9, 3.738323236901599*^9}, {3.738323270559835*^9,
3.738323271142674*^9}, {3.738323566817543*^9, 3.738323567319604*^9}, {
3.7383238757365026`*^9,
3.738323880421362*^9}},ExpressionUUID->"3e18d32a-6b5c-4fc3-ad90-\
be86e06b9080"],
Cell[BoxData[
TemplateBox[{GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwVknk01Ykbxk0qasiSQiikLNnda7luetzrLnQzRoUW+zIZiVTcEhWSohSj
hERkLCXclH6o/CiMNAqtEhO5I1uWbPf79fP74z3v+ZzznPc8530eDZ8QZ/8l
YmJiKYvz/5078lfF2Ar/bQ3d74mFBS6G1nVZX+ExEehn2XZmkV0q57R/4+3E
hLdjpvgiJy5Zud6Z54vv7c4aEiQXm4vkrnN4RyA6r9UhLeLiyMk0FwYvFu0F
ch3KM1ysC3Ct3MZLRWhpNlV/jIvhvVV+Nrw8dBitYdF6uIiUSssXV72P6Rce
x7fWcvHGVedkWE8tpDaM9KzM4iKlyC1s8FE9mpqPbJ8/wUULQ5AR/a0Jjhf7
LM66cGEsXz3l2tAKJF/IEppxkRp9UPNCzCt4ll07USPNxcoeS8PbazuQZWGU
mDzAwbWufe0+0W/gbR98nVfPwfDX8+Ny697DIXNzMD2Tgz1Jq0p8z39ES7ce
Q+UYB3U32jhhQ58wSRXbJv4LB8e7HY0e2fbA30fw7a0WBzeqvc6tjOiF8tc4
yTsiNgo28LN2Pf8HLzIYs4ZtbNy1Kt0YJdMHfcfOB6fz2NiWmzwdzuiH5KzX
wj98NiqTwxMCk7+CtsaMmWrPxoMWyQCD5wMYexpbvFuVjaxLOWKDa/9FgPpY
lOwgC6clXKXPeg9CbWphwP0hC6OtVQHf076B5eB9oSWeBYaKepRL3xBMGpbr
FzixoP7AtCdJdQSrl0k7ZKqyQCz3q8x1HEW20smPikI7eIa05rnuGINGdHPS
rrt2WBZjs5ojHMNNYyPH0qN2UHMz7TW9/B0XzoqHbaLagXKeKpSmjmPrhKX1
wUkm5Lwvpb16OY6YW7qRDZVMeIkCc68cm8Ckjp6KYggTx2wyd9LkJlG1o96V
p8fE+Y8fbV4XTUJbp7tj/AsDMvSbCQG/TCFfcVk5kcrAXmYV/8u/U9D/XPTf
aywGlFbtatx/5Qf0Kup9h7/ZIvMUq+axwTRevTH6iZJqCzUee1CmcRqCxh9p
b8xtId/VHO4ePANBhHROQQvwQj6vKFVyFrI+49XdnsCM1ALtedksTj/cP/RX
3TZs9Pl9mXD3HPBoir/mng0UPLaEj4/OgZlyalwpZSsi1EJYs1fn4We8XuqT
GR2ysSzxwOvzuDuyosPdkI5CoUrdu8x5+Nb2BHzUoeODoIlelTMP9zTXrhdq
dNAdNCkRxfOwYl5JTpCgY0lEp+ZU7TzGB9qlPD9YI6nNWux73zyUFlpj/aOs
kRMrWS00FUE2fo1s1kMa8jfXU3lUEV4XzB1kl9NQ1BxVds9ChE+Gd+2Himmo
kJm4HU4X4aiUpJ9eNg3PMj9dXsoWYVrzKCckjoZBQUWA+h4R4hsqxNY40UDp
2y/vdkqEvCWrd6d+sYLlOcWL1WdEwITW5RtdVtiq91piQ5wIVb6uhrc6rcAO
5RD9CSLsVa8JzGi0wh6RifBIighDSe8FrBIrRCtIPE6+LUJcdkJn1GErNNmV
Bza2iKDM9rNXnbXEh/H+To+XIuilKPRWjFliOGcd40ebCOFVIXMQWkKeiF23
6Y0IN7Is3JlvLbGv0qUlpmfxXuKmmO77lhjZJNK3mRLBfzRIdd8hS6yR4Izd
X08ga8Io98l7C+hURu7naRDor5V0UGqzAM23rOnLRgJPXVaZ+z+3gMcT5Vx5
XQICt1CHjxUWKIwY+jXUjMAud0YCJdECdOEVwRYuAakgvbETVhbwae4Kv3WY
wEYq20En0RyyL4vPSh8lcMlRyyn6tDlqX/P/4IcTuPXZWu/ZMXModSlUOEYS
uHfvYYKWlzlejvCG5+IIZJxXmtxIMQdNodZ3ZzoBj5wV3Il3VAiVEsMeZxA4
1j83bd1KRZranjO6Nxb10grVh+uoGNs8lb2QS0Btm7JDXhEVBVYGH0pKFvWV
283XHqdC3vOG09InBEYHdZvHV1Px1DfIM6SOQPMb+5Nfl1MRfMDq0Id6ArK/
ZTTXzVLQdLgzsayJgIFj4WWDzxREx0k37n9NQLnFwqq1kILBoqitlf0EAjXi
eLXmFKSXbuepCwkEw032uzYFLIHyvsRBAoVyDpJLlSnIqanke48SOGtfONAw
ZwaXv4cF0rMEdO3pzOwaM9RNuusFSJEwdFM0nrY0w2MxtqWyDAlvpQPD1ZvM
UCNlyH4hR+JH4ioTtrwZHmiR3qaKJHxUpGLyB01xZ1f2dVKDROkOi5ld6aYo
9or/s1yLhMTX0k/ysab48+ChSj9tEmK2yrnxwaa4FWfz6i99Eu+Dd0jE25oi
/X635DULEipH6VXp/Sa4+vT5WgcaiQibroz/tJog9UWpFkEnUbMqTjGy0gSX
+qLhyyAhPk672RRrgjiFDXyjHSTcDBVK1quYIEZdIv6fX0g4265sfrxgjFP6
o6lpziSCH/xk8O6LMU7YPbk370qCsfOktnuxMUKPeg40+pBoPzcS1GtkjEOn
OVMn/EmMpz4bipYxRlCSkbjhgUV/YvfX/9llhID8hfV/BJPQsIvM/OJsBL+y
AX1OKIm6z/kl+NkI3jV/0+bCSCw9vrs9u84Q+ztuunjxSXiZr/y1TdsQe3vO
+a2OJNFo2rPV+a0BXIdCwp5HkVjumsQwiTOA81Jc0o8lofgyNXtzpz6cZHWy
Pp8l8TP5m+ARXx87VGWLUxJIjOVH/J6jpA8upefZzEUSb/vlzAe2bwEbTe0l
l0m8PveThHu3Hpi8sl6PVBLhrONn7IP0ALf0Ubmri3nMprnNfNeFjd9poiGd
RF6s9O5Lh3VBDz3wMz9z8Z8shXGRUAdWJ52Ut2STeBZ3R2zMRQfmCZba3Tkk
eunTaoJH2qD8oU69kkfiWLnqQwkZbZjmSDLtChb7MHO8uHfnZhjdGXOaLiRh
/i0tbSJ2E/Sr3nkUl5A4p/m+7V26FvQanh50LyXxqq/mX9+EjdBuKzwhW07C
Q/vp8lJoQqvrckK9gMTF3+v4r7LUoSnkXw1/QMJ/ndqy8iBVbJj0ytd9RGJy
Zmc2P0MC/wMJBkx0
"]]},
Annotation[#, "Charting`Private`Tag$6360#1"]& ]}}, {}, {}}, {
DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
AxesOrigin -> {0, 2.9504253739715924`}, FrameTicks -> {{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines -> {Automatic, Automatic}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {False, False},
AxesLabel -> {None, None}, AxesOrigin -> {0, 2.9504253739715924`},
DisplayFunction :> Identity, Frame -> {{True, True}, {True, True}},
FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> Automatic,
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {Automatic, Automatic}, GridLinesStyle -> Directive[
GrayLevel[0.4, 0.5],
AbsoluteThickness[1],
AbsoluteDashing[{1, 2}]],
Method -> {
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange -> {{0, 125842.60519974108`}, {2.9504253739715924`,
49.99999974382584}}, PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],FormBox[
FormBox[
TemplateBox[{
RowBox[{"r1", "(", "t", ")"}]}, "LineLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
"RGBColor[0.368417, 0.506779, 0.709798]"], Appearance ->
None, BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
"}"}], ",",
RowBox[{"{",
TagBox[#, HoldForm], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{{3.738322864815982*^9, 3.738322900675366*^9}, {
3.738323234172016*^9, 3.7383232374259043`*^9}, 3.738323271646006*^9,
3.738323334254758*^9, {3.73832348966179*^9, 3.738323497424955*^9}, {
3.7383235679230967`*^9, 3.738323598072255*^9}, 3.738323788054707*^9,
3.738323880966076*^9, {3.738326304143306*^9,
3.7383263161615973`*^9}},ExpressionUUID->"941d9cdb-ff4d-438f-a7f7-\
baf44b8fe33e"]
}, Open ]],
Cell[TextData[StyleBox["Check that the final radius we compute is near the \
ISCO",
FontColor->RGBColor[0, 0, 1]]], "Text",
CellChangeTimes->{{3.7383272402358427`*^9,
3.738327252314286*^9}},ExpressionUUID->"42b68b1d-0e3c-4fbb-ad59-\
c193a2d71668"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"r1", "[", "tmax", "]"}], "\[IndentingNewLine]",
RowBox[{"rISCO", "=",
RowBox[{"KerrGeoISCO", "[",
RowBox[{"a", ",", "0"}], "]"}]}]}], "Input",
CellChangeTimes->{{3.738323277884851*^9, 3.738323288381907*^9}, {
3.738323618007642*^9,
3.738323618876745*^9}},ExpressionUUID->"7f45ab05-e1df-40ea-8efe-\
c434182a11d7"],
Cell[BoxData["2.906792839062513`"], "Output",
CellChangeTimes->{{3.738323280120973*^9, 3.738323288671266*^9},
3.738323335117138*^9, {3.7383235816257563`*^9, 3.738323619286048*^9},
3.738323789988612*^9, {3.738326305232284*^9,
3.738326316297092*^9}},ExpressionUUID->"fb55b9ff-cb38-4012-8114-\
6cff5a9acbd4"],
Cell[BoxData["2.9066438544641957`"], "Output",
CellChangeTimes->{{3.738323280120973*^9, 3.738323288671266*^9},
3.738323335117138*^9, {3.7383235816257563`*^9, 3.738323619286048*^9},
3.738323789988612*^9, {3.738326305232284*^9,
3.738326316307267*^9}},ExpressionUUID->"772b31a7-f7fc-4afc-bcd9-\
be061bc1ba3f"]