-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKerrGeodesics.nb
9776 lines (9604 loc) · 502 KB
/
KerrGeodesics.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Notebook[{
Cell[CellGroupData[{
Cell["Kerr Geodesics", \
"Title",ExpressionUUID->"0f1b5dd4-af38-4ec9-9c68-c3552143acb9"],
Cell["\<\
The KerrGeodesics package provides functions for computing quantities related \
to bound timelike geodesic orbits in Kerr spacetime. The package is part of \
the Black Hole Perturbation Toolkit (bhptoolkit.org). Before using the \
functions, first load the package:\
\>", "Text",ExpressionUUID->"c435dd41-e3a1-4ee2-b572-31559b6e8453"],
Cell[BoxData[
RowBox[{"<<",
"KerrGeodesics`"}]], \
"Input",ExpressionUUID->"f68c0a58-b336-451c-b19b-4fa1b91985ad"],
Cell[TextData[{
"For a given black hole spin a geodesic can be unique parametrized (up to \
orientation) by the orbital Energy, \[ScriptCapitalE], angular momentum, \
\[ScriptCapitalL], and Carter constant, \[ScriptCapitalQ]. An alternative \
parameterization is given by the semi-latus rectum, p, orbital eccentricity, \
e, and an inclination angle. There are a few inclination angles used in the \
literature. In the Toolkit we opt to use ",
Cell[BoxData[
FormBox[
RowBox[{
SubscriptBox["x", "inc"], "=",
RowBox[{"Cos", "[",
SubscriptBox["\[Theta]", "inc"], "]"}]}], TraditionalForm]],
ExpressionUUID->"2136ff89-1153-42ce-9ac4-04cadc9fb611"],
". The angle ",
Cell[BoxData[
FormBox[
SubscriptBox["\[Theta]", "inc"], TraditionalForm]],ExpressionUUID->
"76df8e44-936d-46ae-9d5d-e20ce302222e"],
" relates to the minimum angle obtained during the orbital motion, ",
Cell[BoxData[
FormBox[
SubscriptBox["\[Theta]", "min"], TraditionalForm]],ExpressionUUID->
"6aa73436-afeb-4ab4-84ad-d75512f929f8"],
" by ",
Cell[BoxData[
FormBox[
RowBox[{
SubscriptBox["\[Theta]", "inc"], " ", "=", " "}], TraditionalForm]],
ExpressionUUID->"b8e85b47-e9ed-4131-bb19-3f8bb05744d8"],
Cell[BoxData[
FormBox[
RowBox[{
FractionBox["\[Pi]", "2"], " ", "-", " ",
RowBox[{
RowBox[{"Sign", "[", "\[ScriptCapitalL]", "]"}],
SubscriptBox["\[Theta]", "min"]}]}], TraditionalForm]],ExpressionUUID->
"1950ecc0-6092-4555-b7a7-905668806f6d"],
". Equatorial prograde orbits have ",
Cell[BoxData[
FormBox[
RowBox[{
SubscriptBox["x", "inc"], "=", "1"}], TraditionalForm]],ExpressionUUID->
"7ae98cb8-76b2-425d-ad8f-4a07c1fd68e7"],
", equatorial retrograde orbits have ",
Cell[BoxData[
FormBox[
RowBox[{
SubscriptBox["x", "inc"], "=",
RowBox[{"-", "1"}]}], TraditionalForm]],ExpressionUUID->
"48fc8cc5-78fb-4971-90e2-bc5b4abce668"],
" and polar orbits have ",
Cell[BoxData[
FormBox[
RowBox[{
SubscriptBox["x", "inc"], "=", "0"}], TraditionalForm]],ExpressionUUID->
"ca7cd96b-1149-497a-a2b7-08c772f4b563"],
".\n\nFor all orbits we take ",
Cell[BoxData[
FormBox[
RowBox[{"0", "\[LessEqual]", " ", "a", "\[LessEqual]", "1"}],
TraditionalForm]],ExpressionUUID->"86615a3d-7f29-4f30-a1e8-f0ce43796852"],
" and use the inclination angle to differentiate between prograde and \
retrograde orbits."
}], "Text",ExpressionUUID->"f636aa4c-9127-4944-a62f-1ef87a3fd116"],
Cell[CellGroupData[{
Cell["Constants of motion", \
"Subsection",ExpressionUUID->"18a102d1-7238-4900-8062-23ae533772b7"],
Cell["The constants of motion can be found individually", \
"Text",ExpressionUUID->"126c6bef-c174-4623-92d7-1e6bbd9f146d"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"KerrGeoEnergy", "[",
RowBox[{"0.9", ",", "10", ",", "0.5", ",",
RowBox[{"Cos", "[",
RowBox[{"\[Pi]", "/", "4"}], "]"}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"KerrGeoAngularMomentum", "[",
RowBox[{"0.9", ",", "10", ",", "0.5", ",",
RowBox[{"Cos", "[",
RowBox[{"\[Pi]", "/", "4"}], "]"}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"KerrGeoCarterConstant", "[",
RowBox[{"0.9", ",", "10", ",", "0.5", ",",
RowBox[{"Cos", "[",
RowBox[{"\[Pi]", "/", "4"}], "]"}]}],
"]"}]}], "Input",ExpressionUUID->"7d894a01-5f2c-4b5a-bf0a-7a25a04493f9"],
Cell[BoxData["0.9642923500426207`"], \
"Output",ExpressionUUID->"ea5509d4-a910-4086-baaa-51871555fd1d"],
Cell[BoxData["2.526020889476346`"], \
"Output",ExpressionUUID->"3f29401a-28e8-482f-8571-723ee303163f"],
Cell[BoxData["6.409188340848828`"], \
"Output",ExpressionUUID->"9c78b9f9-e2f8-4a04-b0d0-bb3d6dad46e5"]
}, Open ]],
Cell["\<\
They can also be computed together, and at arbitrary precision\
\>", "Text",ExpressionUUID->"4aa54258-17ad-4f42-bc75-8c2327448fa8"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"KerrGeoConstantsOfMotion", "[",
RowBox[{"0.9`20", ",", "10", ",", "0.5`20", ",",
RowBox[{"Cos", "[",
RowBox[{"\[Pi]", "/", "4"}], "]"}]}],
"]"}]], "Input",ExpressionUUID->"bd4f06b2-b85c-4b2a-884e-4cc66dc77ccb"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"0.96429235004262073804962355095544876757`18.84394110765708", ",",
"2.52602088947635072606424698557283615642`17.18129949157711", ",",
"6.40918834084885240794477281632654817768`16.881638713356683"}],
"}"}]], "Output",ExpressionUUID->"44f2eeb1-a7b5-411d-aeb6-4afc0320df8b"]
}, Open ]],
Cell["\<\
Some cases can be evaluated analytically, e.g., Schwarzschild orbits\
\>", "Text",ExpressionUUID->"202bdbac-6f3d-4ad6-b84f-eca1257bb778"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"KerrGeoConstantsOfMotion", "[",
RowBox[{"0", ",", "p", ",", "e", ",", "1"}],
"]"}]], "Input",ExpressionUUID->"8661feef-248e-4377-9c05-b18ead5f6348"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
SqrtBox[
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "4"}], " ",
SuperscriptBox["e", "2"]}], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "2"}], "+", "p"}], ")"}], "2"]}],
RowBox[{"p", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "-",
SuperscriptBox["e", "2"], "+", "p"}], ")"}]}]]], ",",
FractionBox["p",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "-",
SuperscriptBox["e", "2"], "+", "p"}]]], ",", "0"}],
"}"}]], "Output",ExpressionUUID->"f1b9e0c8-5b30-4f59-bd01-098d8146ec7c"]
}, Open ]],
Cell["Or polar, eccentric orbits in Kerr spacetime", \
"Text",ExpressionUUID->"42d292ea-02fd-4216-ac3b-3f711b11a3a3"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"KerrGeoConstantsOfMotion", "[",
RowBox[{"a", ",", "p", ",", "e", ",", "0"}],
"]"}]], "Input",ExpressionUUID->"3546b65e-201a-4bfa-baf2-76f2e2d7aad3"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
SqrtBox[
RowBox[{"-",
FractionBox[
RowBox[{"p", " ",
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["a", "4"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["e", "2"]}], ")"}], "2"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "4"}], " ",
SuperscriptBox["e", "2"]}], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "2"}], "+", "p"}], ")"}], "2"]}], ")"}], " ",
SuperscriptBox["p", "2"]}], "+",
RowBox[{"2", " ",
SuperscriptBox["a", "2"], " ", "p", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "2"}], "+", "p", "+",
RowBox[{
SuperscriptBox["e", "2"], " ",
RowBox[{"(",
RowBox[{"2", "+", "p"}], ")"}]}]}], ")"}]}]}], ")"}]}],
RowBox[{
RowBox[{
SuperscriptBox["a", "4"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["e", "2"]}], ")"}], "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["e", "2"], "-", "p"}], ")"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"3", "+",
SuperscriptBox["e", "2"], "-", "p"}], ")"}], " ",
SuperscriptBox["p", "4"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["a", "2"], " ",
SuperscriptBox["p", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SuperscriptBox["e", "4"], "+", "p", "+",
RowBox[{
SuperscriptBox["e", "2"], " ",
RowBox[{"(",
RowBox[{"2", "+", "p"}], ")"}]}]}], ")"}]}]}]]}]], ",", "0", ",",
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox["p", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["a", "4"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["e", "2"]}], ")"}], "2"]}], "+",
SuperscriptBox["p", "4"], "+",
RowBox[{"2", " ",
SuperscriptBox["a", "2"], " ", "p", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "2"}], "+", "p", "+",
RowBox[{
SuperscriptBox["e", "2"], " ",
RowBox[{"(",
RowBox[{"2", "+", "p"}], ")"}]}]}], ")"}]}]}], ")"}]}],
RowBox[{
RowBox[{
SuperscriptBox["a", "4"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["e", "2"]}], ")"}], "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["e", "2"], "-", "p"}], ")"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"3", "+",
SuperscriptBox["e", "2"], "-", "p"}], ")"}], " ",
SuperscriptBox["p", "4"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["a", "2"], " ",
SuperscriptBox["p", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SuperscriptBox["e", "4"], "+", "p", "+",
RowBox[{
SuperscriptBox["e", "2"], " ",
RowBox[{"(",
RowBox[{"2", "+", "p"}], ")"}]}]}], ")"}]}]}]]}]}],
"}"}]], "Output",ExpressionUUID->"20de4c9a-8d86-45a9-b737-ef7b174a56ee"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Orbital frequencies", \
"Subsection",ExpressionUUID->"eb71e93a-1db0-4a17-8bda-683905a817de"],
Cell["\<\
By default the orbital frequencies are computed with respect to the time of \
the asymptotic observer (t-time in Boyer-Lindquist coordinates)\
\>", "Text",ExpressionUUID->"fc733de9-e890-4f18-be42-d966f8a64d25"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"KerrGeoFrequencies", "[",
RowBox[{"0.9", ",", "5", ",", "0.7", ",",
RowBox[{"Cos", "[",
RowBox[{"\[Pi]", "/", "3"}], "]"}]}],
"]"}]], "Input",ExpressionUUID->"f72fb2ab-2e12-47d1-b888-8e640f56ae2a"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"0.018992219530028744`", ",", "0.04726757166002216`", ",",
"0.05681330201906578`"}],
"}"}]], "Output",ExpressionUUID->"0e6c1700-3ad7-4f16-baad-4f55a86917b3"]
}, Open ]],
Cell["You can also computed them w.r.t. Mino time", \
"Text",ExpressionUUID->"84afe2b9-a712-49ac-86d6-8c206e69049d"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"KerrGeoFrequencies", "[",
RowBox[{"0.9`20", ",", "5", ",", "0.7`20", ",",
RowBox[{"Cos", "[",
RowBox[{"\[Pi]", "/", "3"}], "]"}], ",",
RowBox[{"Time", "\[Rule]", "\"\<Mino\>\""}]}],
"]"}]], "Input",ExpressionUUID->"b2ec5f44-2b51-4fd8-b486-62ab04869abc"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"1.24365803511572096937412531683268112344`14.978255001985296", ",",
"3.09519881035764338221444798402034261484`15.91104198545718", ",",
"3.72027710851561564487972900625736041561`11.107623611982877"}],
"}"}]], "Output",ExpressionUUID->"d5d93d5c-1f3d-43d6-af5c-d4fb51c64bf6"]
}, Open ]],
Cell["Some cases can be evaluated analytically", \
"Text",ExpressionUUID->"eefaa63d-e187-4da8-be9e-d4b56ad8b6f2"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"KerrGeoFrequencies", "[",
RowBox[{"0", ",", "p", ",", "e", ",", "x", ",",
RowBox[{"Time", "\[Rule]", "\"\<Mino\>\""}]}],
"]"}]], "Input",ExpressionUUID->"5e2da469-a611-4d72-8ab5-4035823ec02c"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{
SqrtBox[
RowBox[{"-",
FractionBox[
RowBox[{"p", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "6"}], "+",
RowBox[{"2", " ", "e"}], "+", "p"}], ")"}]}],
RowBox[{"3", "+",
SuperscriptBox["e", "2"], "-", "p"}]]}]], " ", "\[Pi]"}],
RowBox[{"2", " ",
RowBox[{"EllipticK", "[",
FractionBox[
RowBox[{"4", " ", "e"}],
RowBox[{
RowBox[{"-", "6"}], "+",
RowBox[{"2", " ", "e"}], "+", "p"}]], "]"}]}]], ",",
RowBox[{"p", " ",
SqrtBox[
FractionBox["1",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "-",
SuperscriptBox["e", "2"], "+", "p"}], ")"}], " ",
SuperscriptBox["x", "2"]}]]], " ", "x"}], ",",
FractionBox[
RowBox[{"p", " ", "x"}],
SqrtBox[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "-",
SuperscriptBox["e", "2"], "+", "p"}], ")"}], " ",
SuperscriptBox["x", "2"]}]]]}],
"}"}]], "Output",ExpressionUUID->"00c458e0-46e9-4316-a330-6c028f66376b"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["\<\
Special orbits: ISCO, separatrix, photon sphere, IBSO and ISSO\
\>", "Subsection",ExpressionUUID->"5d43659d-96f4-4d0e-b637-cd5c1587947f"],
Cell[CellGroupData[{
Cell["ISCO", \
"Subsubsection",ExpressionUUID->"3c355960-8ac5-4ccf-8fe5-a4dc40771f3a"],
Cell["\<\
Radius of the ISCO for prograde and retrograde orbits for given a\
\>", "Text",
CellChangeTimes->{{3.709549790496475*^9, 3.709549794704348*^9}, {
3.709550147942068*^9, 3.7095501518672047`*^9}, {3.709550897300111*^9,
3.709550898850286*^9}},ExpressionUUID->"17710782-fbed-4ae5-b767-\
9e56483935f3"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"KerrGeoISCO", "[",
RowBox[{"0.99`20", ",", "1"}], "]"}], "\[IndentingNewLine]",
RowBox[{"KerrGeoISCO", "[",
RowBox[{"0.99`20", ",",
RowBox[{"-", "1"}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"KerrGeoISCO", "[",
RowBox[{"a", ",", "1"}],
"]"}]}], "Input",ExpressionUUID->"b5a145c2-f71c-44d0-83b7-d34a8b925550"],
Cell[BoxData["1.45449793805967163063770101874648865652`18.601239711049704"], \
"Output",ExpressionUUID->"23c7ddc1-0eba-40f1-a8e0-e65e9ff6734c"],
Cell[BoxData["8.97186134254696814383077242421882397161`19.391409154205732"], \
"Output",ExpressionUUID->"3cb5ffb5-f21f-4adf-b545-13b3c01776e1"],
Cell[BoxData[
RowBox[{"3", "+",
SqrtBox[
RowBox[{
RowBox[{"3", " ",
SuperscriptBox["a", "2"]}], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["a", "2"]}], ")"}],
RowBox[{"1", "/", "3"}]], " ",
RowBox[{"(",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-", "a"}], ")"}],
RowBox[{"1", "/", "3"}]], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+", "a"}], ")"}],
RowBox[{"1", "/", "3"}]]}], ")"}]}]}], ")"}], "2"]}]], "-",
SqrtBox[
RowBox[{
RowBox[{"(",
RowBox[{"2", "-",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["a", "2"]}], ")"}],
RowBox[{"1", "/", "3"}]], " ",
RowBox[{"(",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-", "a"}], ")"}],
RowBox[{"1", "/", "3"}]], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+", "a"}], ")"}],
RowBox[{"1", "/", "3"}]]}], ")"}]}]}], ")"}], " ",
RowBox[{"(",
RowBox[{"4", "+",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["a", "2"]}], ")"}],
RowBox[{"1", "/", "3"}]], " ",
RowBox[{"(",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-", "a"}], ")"}],
RowBox[{"1", "/", "3"}]], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+", "a"}], ")"}],
RowBox[{"1", "/", "3"}]]}], ")"}]}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{
RowBox[{"3", " ",
SuperscriptBox["a", "2"]}], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["a", "2"]}], ")"}],
RowBox[{"1", "/", "3"}]], " ",
RowBox[{"(",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-", "a"}], ")"}],
RowBox[{"1", "/", "3"}]], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+", "a"}], ")"}],
RowBox[{"1", "/", "3"}]]}], ")"}]}]}], ")"}], "2"]}]]}]}],
")"}]}]]}]], \
"Output",ExpressionUUID->"95264079-a6f0-47ad-a2cc-98541c6c1a2a"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Separatrix", \
"Subsubsection",ExpressionUUID->"7d17be73-0d07-4344-aae1-b9837be933c3"],
Cell["Simple cases are known analytically", \
"Text",ExpressionUUID->"96db98fc-79f1-4280-859b-8d504ddc8e26"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"KerrGeoSeparatrix", "[",
RowBox[{"0", ",", "e", ",", "1"}], "]"}], "\[IndentingNewLine]",
RowBox[{"KerrGeoSeparatrix", "[",
RowBox[{"1", ",", "e", ",", "1"}],
"]"}]}], "Input",ExpressionUUID->"3c7c9bb9-da41-473c-8c0a-00ce46cd4813"],
Cell[BoxData[
RowBox[{"6", "+",
RowBox[{
"2", " ",
"e"}]}]], "Output",ExpressionUUID->"387f63cf-086b-403c-a2a3-a54d2cbcfd27"],
Cell[BoxData[
RowBox[{"1", "+",
"e"}]], "Output",ExpressionUUID->"64a9fef8-406d-426c-acd9-847f515628fa"]
}, Open ]],
Cell[TextData[{
"Find the value of ",
Cell[BoxData[
FormBox[
SubscriptBox["p", "s"], TraditionalForm]],ExpressionUUID->
"16b79041-cc86-4f8b-9e2f-243972c81faf"],
" at the separatrix for generic orbits given ",
Cell[BoxData[
FormBox[
RowBox[{"(",
RowBox[{"a", ",", "e", ",",
SubscriptBox["x", "inc"]}]}], TraditionalForm]],ExpressionUUID->
"fc4dd9ec-3cea-489f-b646-2d1872d9f466"],
")"
}], "Text",ExpressionUUID->"f472e2cf-5f16-4235-b48d-05e55030b410"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"KerrGeoSeparatrix", "[",
RowBox[{"0.9`20", ",", "0.5`20", ",",
RowBox[{"Cos", "[",
RowBox[{"\[Pi]", "/", "3"}], "]"}]}],
"]"}]], "Input",ExpressionUUID->"ed4b3f5f-e1d1-4f29-9d03-809365795b6c"],
Cell[BoxData["4.34225968111274826125829387612249013844`15.387944313705123"], \
"Output",ExpressionUUID->"d3911ca8-ae29-4e19-861e-3f116e3a34f9"]
}, Open ]],
Cell["\<\
Plot the separatrix for various inclinations for a rapidly rotating black hole\
\>", "Text",ExpressionUUID->"38746bec-9829-46e6-9c1f-414d1e585292"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"res", "=",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"KerrGeoSeparatrix", "[",
RowBox[{"0.999", ",", "e", ",", "x"}], "]"}], ",", "e"}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "1"}], ",", "1", ",", "0.2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"e", ",", "0", ",", "1", ",", "0.1"}], "}"}]}], "]"}], "//",
"Quiet"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"ListPlot", "[",
RowBox[{"res", ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Detailed\>\""}], ",",
RowBox[{"ImageSize", "\[Rule]", "600"}]}],
"]"}]}], "Input",ExpressionUUID->"b34ca4f7-45d5-49d9-8f55-f8f34658fa13"],
Cell[BoxData[
GraphicsBox[{{}, {{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.009166666666666668],
AbsoluteThickness[1.6],
LineBox[{{8.997187363735224, 0.}, {9.29233352274851, 0.1}, {
9.578797665308908, 0.2}, {9.857645359180415, 0.30000000000000004`}, {
10.129740563512222`, 0.4}, {10.395795304867322`, 0.5}, {
10.656404643114996`, 0.6000000000000001}, {10.91207192482278,
0.7000000000000001}, {11.163227431119683`, 0.8}, {11.41024241653845,
0.9}, {11.653439859109106`, 1.}}]},
{RGBColor[0.880722, 0.611041, 0.142051], PointSize[0.009166666666666668],
AbsoluteThickness[1.6],
LineBox[{{8.281607656235284, 0.}, {8.553053289898278, 0.1}, {
8.816097643923477, 0.2}, {9.071776997733945, 0.30000000000000004`}, {
9.320932178725545, 0.4}, {9.564256577821032, 0.5}, {9.802329978997527,
0.6000000000000001}, {10.035643013976685`, 0.7000000000000001}, {
10.264615235612807`, 0.8}, {10.489608735113517`, 0.9}, {
10.710938577130143`, 1.}}]},
{RGBColor[0.560181, 0.691569, 0.194885], PointSize[0.009166666666666668],
AbsoluteThickness[1.6],
LineBox[{{7.554399432769044, 0.}, {7.801778501319112, 0.1}, {
8.041076018162663, 0.2}, {8.273293752429314, 0.30000000000000004`}, {
8.499245273569842, 0.4}, {8.71960205069119, 0.5}, {8.934925959225708,
0.6000000000000001}, {9.14569279804645, 0.7000000000000001}, {
9.352309683121566, 0.8}, {9.555128162120653, 0.9}, {9.754454271369847,
1.}}]},
{RGBColor[0.922526, 0.385626, 0.209179], PointSize[0.009166666666666668],
AbsoluteThickness[1.6],
LineBox[{{6.813344964633585, 0.}, {7.036221639561816, 0.1}, {
7.251383006758818, 0.2}, {7.4597901695068956`, 0.30000000000000004`}, {
7.662224578504321, 0.4}, {7.859331913961262, 0.5}, {8.051653050388934,
0.6000000000000001}, {8.23964647317237, 0.7000000000000001}, {
8.423704868909333, 0.8}, {8.604167642151632, 0.9}, {8.78133051976823,
1.}}]},
{RGBColor[0.528488, 0.470624, 0.701351], PointSize[0.009166666666666668],
AbsoluteThickness[1.6],
LineBox[{{6.05541561110467, 0.}, {6.253258824053429, 0.1}, {
6.443809900257355, 0.2}, {6.627981849751726, 0.30000000000000004`}, {
6.806518146113194, 0.4}, {6.9800340278653525`, 0.5}, {7.149045657804324,
0.6000000000000001}, {7.313991243203624, 0.7000000000000001}, {
7.475246674314198, 0.8}, {7.633137328569333, 0.9}, {7.787947132442093,
1.}}]},
{RGBColor[0.772079, 0.431554, 0.102387], PointSize[0.009166666666666668],
AbsoluteThickness[1.6],
LineBox[{{5.276285091382932, 0.}, {5.448427918990761, 0.1}, {
5.613773949157069, 0.2}, {5.7731788480787385`, 0.30000000000000004`}, {
5.9273408336374445`, 0.4}, {6.07683894020696, 0.5}, {6.222160043723353,
0.6000000000000001}, {6.3637184420168005`, 0.7000000000000001}, {
6.501870356941886, 0.8}, {6.636924883368546, 0.9}, {6.769152396250924,
1.}}]},
{RGBColor[0.363898, 0.618501, 0.782349], PointSize[0.009166666666666668],
AbsoluteThickness[1.6],
LineBox[{{4.469391648820982, 0.}, {4.614961758682606, 0.1}, {
4.754326918564497, 0.2}, {4.888273387508425, 0.30000000000000004`}, {
5.017444697261283, 0.4}, {5.14237626898646, 0.5}, {5.2635198682705955`,
0.6000000000000001}, {5.3812613253531865`, 0.7000000000000001}, {
5.495933659200357, 0.8}, {5.607826984483883, 0.9}, {5.717196116378571,
1.}}]},
{RGBColor[1, 0.75, 0], PointSize[0.009166666666666668], AbsoluteThickness[
1.6], LineBox[{{3.6239216406717145`, 0.}, {3.7417111129253806`, 0.1}, {
3.8540295865811838`, 0.2}, {3.961576981387572, 0.30000000000000004`}, {
4.064929222409458, 0.4}, {4.164568253146432, 0.5}, {4.260903263304613,
0.6000000000000001}, {4.3542860791745674`, 0.7000000000000001}, {
4.445022562354239, 0.8}, {4.533381210092986, 0.9}, {4.619599750580978,
1.}}]},
{RGBColor[0.647624, 0.37816, 0.614037], PointSize[0.009166666666666668],
AbsoluteThickness[1.6],
LineBox[{{2.71989821955761, 0.}, {2.808102509675302, 0.1}, {
2.8918398357459654`, 0.2}, {2.9716969185280737`,
0.30000000000000004`}, {3.048165080450619, 0.4}, {3.121663253863929,
0.5}, {3.1925546246616365`, 0.6000000000000001}, {3.2611589309716127`,
0.7000000000000001}, {3.327761745356501, 0.8}, {3.3926216296571163`,
0.9}, {3.455975769739671, 1.}}]},
{RGBColor[0.571589, 0.586483, 0.], PointSize[0.009166666666666668],
AbsoluteThickness[1.6],
LineBox[{{1.7233835486599256`, 0.}, {1.7800615605298193`, 0.1}, {
1.8354398562549545`, 0.2}, {1.8900912788460045`,
0.30000000000000004`}, {1.9448006391443218`, 0.4}, {2.0005282322617686`,
0.5}, {2.0583727724094145`, 0.6000000000000001}, {2.119475320338886,
0.7000000000000001}, {2.184840123931948, 0.8}, {2.2551194902751526`,
0.9}, {2.3304786106697626`, 1.}}]},
{RGBColor[0.915, 0.3325, 0.2125], PointSize[0.009166666666666668],
AbsoluteThickness[1.6],
LineBox[{{1.1817646130335644`, 0.}, {1.2430089335987424`, 0.1}, {
1.3274250270367798`, 0.2}, {1.4207273698679803`,
0.30000000000000004`}, {1.5181293631592625`, 0.4}, {1.617728860512183,
0.5}, {1.718638259966163, 0.6000000000000001}, {1.820390628012786,
0.7000000000000001}, {1.9227174298783185`, 0.8}, {2.025453364494286,
0.9}, {2.1284911064069143`, 1.}}]}}, {}, {}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.4, 0.5],
AbsoluteThickness[1],
AbsoluteDashing[{1, 2}]],
ImagePadding->All,
ImageSize->600,
Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 11.653439859109106`}, {0, 1.}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.05]}},
Ticks->{
Automatic,
Automatic}]], \
"Output",ExpressionUUID->"a55770e0-9c5a-4374-8394-71963a23cbf1"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Photon sphere", \
"Subsubsection",ExpressionUUID->"0ac0bfb4-93e6-4ec4-b05e-baa05b3b6889"],
Cell["\<\
The photon sphere radius is known analytically for a few special cases\
\>", "Text",ExpressionUUID->"b3e6cdde-641d-41a3-8558-7896c952b450"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"KerrGeoPhotonSphereRadius", "[",
RowBox[{"a", ",", "1"}], "]"}], "\[IndentingNewLine]",
RowBox[{"KerrGeoPhotonSphereRadius", "[",
RowBox[{"1", ",", "x"}], "]"}], "\[IndentingNewLine]",
RowBox[{"KerrGeoPhotonSphereRadius", "[",
RowBox[{"a", ",", "0"}],
"]"}]}], "Input",ExpressionUUID->"05bcc74f-b270-4428-be7b-eef3169928f5"],
Cell[BoxData[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Cos", "[",
FractionBox[
RowBox[{"2", " ",
RowBox[{"ArcCos", "[",
RowBox[{"-", "a"}], "]"}]}], "3"], "]"}]}],
")"}]}]], "Output",ExpressionUUID->"f40af6fb-95bb-49e0-9fba-3ae9ee4666f1"],
Cell[BoxData[
RowBox[{"If", "[",
RowBox[{
RowBox[{"x", "<",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["3"]}]}], ",",
RowBox[{"1", "+",
RowBox[{
SqrtBox["2"], " ",
SqrtBox[
RowBox[{"1", "-", "x"}]]}], "-", "x"}], ",", "1"}],
"]"}]], "Output",ExpressionUUID->"6c8d9342-772c-4ffc-9db6-98a4a0e62cbb"],
Cell[BoxData[
RowBox[{"1", "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox[
SuperscriptBox["a", "2"], "3"]}]], " ",
RowBox[{"Cos", "[",
RowBox[{
FractionBox["1", "3"], " ",
RowBox[{"ArcCos", "[",
FractionBox[
RowBox[{"1", "-",
SuperscriptBox["a", "2"]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
FractionBox[
SuperscriptBox["a", "2"], "3"]}], ")"}],
RowBox[{"3", "/", "2"}]]], "]"}]}],
"]"}]}]}]], \
"Output",ExpressionUUID->"d510fdc4-fdcc-456a-8d13-bb886ce8649f"]
}, Open ]],
Cell["Evaluate it numerically to arbitrary precision", \
"Text",ExpressionUUID->"67f36cfb-0b64-4759-bc38-37b08743166e"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"KerrGeoPhotonSphereRadius", "[",
RowBox[{"0.998`20", ",",
RowBox[{"Cos", "[",
RowBox[{"3",
RowBox[{"\[Pi]", "/", "4"}]}], "]"}]}],
"]"}]], "Input",ExpressionUUID->"5a395a21-bd5c-4004-b9a0-89ad032e0258"],
Cell[BoxData["3.55419833584976250315118513251415497432`19."], \
"Output",ExpressionUUID->"11e146ed-c09d-43ef-bf9c-e5c79ce665b9"]
}, Open ]],
Cell["\<\
Plot the photon sphere radius for a number of different black hole spins\
\>", "Text",ExpressionUUID->"74b65a6e-d8af-47f3-9e6f-918f540ca9c2"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"KerrGeoPhotonSphereRadius", "[",
RowBox[{"a", ",", "x"}], "]"}], ",",
RowBox[{"{",
RowBox[{"a", ",", "0", ",", "1", ",", "0.1"}], "}"}]}], "]"}], "//",
"Evaluate"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "1"}], ",", "1"}], "}"}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Detailed\>\""}]}],
"]"}]], "Input",ExpressionUUID->"623a293d-c789-48b7-b919-939fbae75170"],
Cell[BoxData[
TemplateBox[{GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJxTTMoPSmViYGAwAWIQrWcv9ur///f7GcCAwyGo/exq43gEv/x8S276vndw
/pUr3K8OJr6F82UP5IuYy7yB87dmH2Hlv/sKzk/oMfxws+klnP9jUnXHfvsX
cP5ivnuSMx4+g/PneBkWXe58Cuc35SRWaHo+gfOrmVeVF719BOcnNpxXubbi
IZw/de/TGXOyHsD5u+5r8KxRugfnKws4OIXMuw3nb9LqyHr0+Aacf//oRgUz
s2tw/lOdqUb7t12G8wXrVprpMV6E83XM3uss/XwGzm92eXthZ8VxOF80ZN2E
SPFDCPu+HeU/obILzl96+2nvy5Z1cH5soMyW28lT4PydXNVXD5VOtofxTR8x
yjVGrIfzlT/s/ml1aCec77n45lm/iENwvquvEPPXrcfh/P746w0G28/A+cf9
ZHkDhC7C+W8VResuzboM55eWaCf2i12D86/fEQhKO3EDzk+otHnO7nMbzj+s
bd51mPUenK/GuefFEo8HcL7snmxX1o6HcD7DL6aVRY8ewfnfA/fGHVV9Auff
NomXVm15CucXhAsIKt15BudLTnkSwSL7As5fF71g+eeKl3B+uG29x4m9r+D8
jXG5SlZ/XsP5P7icmXeGvoXzgy5am8nOeAfnO3BoTuDzeQ/nQ/MLnA8Ah+/p
Zw==
"]]}, Annotation[#, "Charting`Private`Tag$2725#1"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwt1Hs01GkcBvBhOO+7lOsiRI1BkjpSrum83yVNyrQlrZyp3E6UUpvdDN2T
NlqXCnvctq1QxM5UuyXXl5GoOCXXImEQU+ZXdHHb2t+es3885zmfv57/Hl7I
Ad9dqhwOR8jmv15GDBVfvzJ0f+QZIX8Ew4EpfsLUNEMtHd42zr7GcPOv5dYT
Hxna8ixuTQdrBxthyPAbhmpKiHsia2fd+BdNnQx1m/i8lBnGAPL3j7KkDP04
GWpSMYTB92xz8YpAhsL4CqMtcgziJ/GR4dVKev0e98rpXgxtbZqK2uAxetZb
jTevDYNZzYFvnee/pRmXvf4IeoThzt776tovFbSoWfShpwZDUNLyd8/jRunV
9OuClLsYJi8eSaBkhG5/YDM+XoIhT6vXOLN/mE7JsgXJVzHkrl8e1Zo4RJ+o
OT4WZWKI2xccs9h7kJaoJ37qScFwhHtDHDU2QEMyw4vT4zEEn3xi2VHYT3kL
mqRfDmPIqBrKzI3oo+WWKg65BzGUv7KZU2LRS0X2/qYHwzHwdcDD71I3zeGk
X/28A8Nt24SIAXkXffDlJ8HdLRhe1d9a6OTUQU2ca+oLvTEM2WU40LutdIO7
eJEPYNA9XuS0TKWF8l3qL9g4YbBzYuwKJpooz/r2qTt2GE6vGXtaFtNA143+
4HLUAoOBn+R8gJGM+mV15kTPY/c+1Ws3WpZTkWeEbKE2hoLuoeTReAkV/hOQ
r66OYcfm+X93h6ZTJ87R11kzCMo0jrTLDqWRmfLH+sHjCBwHVMxPbZOSVaZ1
ytARBPx3FVNusjJiwV8bZvAKgXfe8+aN22REbnzfj9uOwEuox/14p4H0+aic
t3yMIDWw86R9aRMhJolZE7UIGjaazd2k10IeKk6bcu4hGOMZHH+W3UqO6U9w
yyUIDv28JDjVsINwen/Zc60AQWePjm9YYxfR+hoiaMlBEBTr/hr5dJOSleKK
wosI6pY4n6tT7yWyLYcO0wQE1t9UjuSv6yNh3NTQuBMIzCr3eqkn9BMt17RU
cTQCzrRqUdTAAEm2Ndf5cx+Cz5urdtZbDRL7Y4YDyaEIulcGmlrFDxE7Txe5
NADBj/46uhY9w8RUUXVRbRMC4/TBbWpmIyRgl+QmV4BAIrp8fSJmlHinCQy9
ViPwX31iXWOVgvRlDIrtVyK4tTPSwm32DblwwzZPuATBpIYnt2zrGMkoPGYn
4SHwbVnlZJapJJHfqzaXzkOgsUqztvJ3JUG7ZS2prGvzX2zYnqckM087OsJZ
28fEBudIlOTKpdl+I9ZaC0qTjOuVRHe3+6zYCMHDfQ5yg3Elya1OARdDBIAX
n9fyYYjNgxRcps/uH5w0kWxmyKfol0YXWEu7GwqE/gzh1J1ctIe1uTSsIimE
ISOO9QJj1rNb84c1YhkS0OiVFKuHoDRvwWp0jSEeNxZZueki2D+XabhWzBBq
Veuqx9paXO279hZDfg2WblToIEhfv2P3mUqG8C3PxWazjnqfncZtZch3Bq6t
09oIbEUR5nldDGlrj1E8Y91/37XIo5chnnvmqhaz3pTZVX1qlCFz9B0dRKyx
aqE3j2GIfGnj+hWs6V5xW80Hhiy1uhmqyTq6fW1g0DRDfGbeHpVrIfj/v0jK
7eO/VbD+F+BjNiU=
"]]},
Annotation[#, "Charting`Private`Tag$2725#2"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwt1Hs0lHkYB/CRei9SDUKqwTSNLakV69Lt/J6SToSNzVJCSG0oa7oMOZsu
WNnpZDctlZwyVKJRU7Iy+UVpbJHKyGUk91AzL9ncsmvfPWf/eM5zPn98z/ev
5+GHRvuET+NwOJ7s/LdXIJOBqSkGG4qTCn2qaYgeF6SMTzA4SIRoXda37660
Gv7M4Az983vuKmmwW+IZ2vuBwX+7GgnmsnYySGypaWSwtH+ntKGKBugaenah
iME5Lcsr/B/T4PNzbYF9MJuXzRIFl9Mgrkvcv7dciwc4OgUH7tGgUs0cqAjR
4GY7r6T+bBp4j6LnOi38iCfDKy1aU2kojnwyY87bAfxs+eeMdWIadklWDjaf
7MfhtvJBTigNY7/Fp2DUh4+G1wlXe9Egnd1mltnRi8Nj+GWNzjRkua8U1Z/u
wTHvhnCPgIaTUSGxS9268Znntul7uTTE694UizSdWFVvaOn9hYKQ43WL39zo
wIeuSo7eek/B+Yc9mVkR7fjR2xUusSoKHrxbol+4qA1XvkixlmEKBFzYsC1b
jbdEDMm3FVIgt06J6OxqwmLfS9b7Mih4V3XH0tHxDfa221erOUlBj815O3y/
Hsv70ovboykwOJbvuELnFR6M4nm6BlBg48jY5A3XYLVLuI7pZgpObdS8LI1V
4tvPeTGB9hQYb5OlbTetxPyusX+MLNi+kao51Ysf4P1mFiYO+hTkqXvO9CfK
cPGRmSMvRkkI9F54Tx2Wjk+1Zs1/3U1CqV58Q+Xhcyhh5KBqw2sSHDp1zE/4
F6HsgHaRbTkJgsGy8dWVpWjcrjsrsYAEN2lzrZd/JVoi4HK3Z5Dg6mmo+7lY
idY/G+FfPkXC2eDG47YlNagpIKRuYwwJSi/erK2Gr9B1+aBLTCAJGr7xsdcX
69HRML32KXcSDh9aFnLW5A2q+RRp/8WZhMZWrs+e6iaULLJsShCSsCtu7XvS
Q412yxMkYUYkPF7mlPp4Rht6mt27VTVFgBWt6Mvd3I50u0+k5WgI4CkiXWek
dKALx+1N36oJ4ExMyxd1diJt0u3k/GoCRr0fBlUJu9G+qx9NX94nQP1N8AJh
Yg+asJGkSaQE/OjHNVjU2otC4xyulKQRYJbe7T+d14ckNw84r0ogQBZw5fpw
bD/61WPnqG8UAX7rEjZXPxxAxy52HVTuIOBO0P5Fqyc/oNxRq09SNwLG9Fx0
S301iMSKVksnAnxerXHkZWrRd7V+FVohAXprZlYoLmvRkaIwYQ7rityWLTul
WsRxHEn1ZW0bGxdySaZFyT8V7VAsJmC2RYnErEqLhriH9VMFBPwZZddl/EmL
GswDS4V8AoBamjbbg0HCuK9WBS1k+2PG5su8GXTm6+UvDFgXqZV5nn4MejpU
trtqAQHmRXvKJKEMUvce+t2G9aRvbq9eHIOmCr/X/2JGQInUYh15jUHNcQPr
M00JODCLUV4rYJDh4GlmC2srcbnPpjsMysm7mz1lQkC6e+APSQoGrV1wTWcv
a9HQxXO69Qy67k63OBgTYB0QYS5tYlCFavJc/1wCOp6syt/QxqBbTvHfXma9
NbOp/EQ/g4ZV855PZ01Nu+HGZxgkd3D+5Q8jAnCkWPXoLwbNUXR6RLE+0rAp
eNcEg3bEz+Nasv7/f6GC5Gb2hAn4F7qRRZU=
"]]},
Annotation[#, "Charting`Private`Tag$2725#3"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwt1Hs01GkcBnCX/c3l5zpC2Qy5lqSY3TWnpPe7WpaiI4dj2i4aXTeipIZs
mi1qtsPRhVa5bBalC5OsrKLXJZctTmkyZMp1xrWZN6yoY2tnz9k/nvOcz1/P
f49dZGzIHj0dHZ0gbf7rlchy/PNngm+Ns5OSC2iI/eAg+fCR4BP+DWH6Wt+t
8HCeniG4SpjuIblGA29ZUOTwBMGrvLe9vfAbDXxOSk9bF8Hm8r6Y4jwaYGjy
yRUpwX5p2TfartAQcrb99lcRBLseuja6+CINomcpB/c90mD74Cxp7SkaXr40
GK8XqjEnrzbnuJAGbl2sOd/6LZ4aERuf9KGhMuoxZfJmHNvOcn/3cKRhZ5rH
u1enxrDxURN6vz4NcxeTJBiNYsFhX5chJRsKjXutsgeGceqiZv5IIxtyN3jE
yX5RYTezbV55hWw4FS1McAlQ4pip+JbMVDYk6d8SxakHcRcjYIf1HjYIxc8c
5SUDmCHqpJR+bMiqVWXnHujHR2qSKn5wYcODvmWGd+x7cda8qGc/mw0OpuAT
mq/AuemKxIoJFtxbLjkwONSNzYoFj3OesqCvqXyJp6ccD3Qy8vh3WKBakcXD
92XY5mpTv0EGCzjJNz1X6nbgfmFoxJlYFqzwJCuKp9vwusCqSH4IC05/p35e
ndCC+9qfFWTxWGARWnZ+y8IGbMbNfVKyQLv3vsmk1fEBttbtaVa/Z0KxQpU+
llKGF6zLKRjrYsL2zdZ/KHZl4sbF0wstHjKhmk7qbDh6CUWfDWJP5jPhm0Fd
m58FUlR3L0KWLmaCw7uHH9Y0VKOn0tK50N1MCCh81b5J0ICiMoO9Vb5M8A0y
05+pbEG8iplG12VMyIjoErtXtSFR842my4ZMaNnENQo260DMmAI3uYYBajuL
5BdXZcjNeoE3X8aAo/GuwgxLORKfaB31/5MBXa9NQ/a2diMfVnfGmhwG7Exc
O8IMVKAXLGX492IGNLryzzVSvYh3f6LUexcDnNk1o0X+/ch3992Bjf4M4NZE
+VKSAZRR76amVzJA56PezbjBQfRcoHKv4zBgdnPtjiYnJerRxChTZylQfB2x
2ClFhXx5EghUUHAo3JRj/3oY/Rgeip5gCqwylYIvuKOoJi8uLvg6BWVbr92Y
ThhDspNrv1WdoyDc+6R/a+04yt0VxEs+TEH5joP2a+YnkHtKYFGzgII5er1+
dZgaLZo0f+q6joKQDi9PbrYGJcTcMUtzooD2MqivydMgTl/jBRut64t6Nm4r
1KDVjHbzckcK3BMShTllGtR3vNJZ7kCBsW1VmlWTBo0YDicusafgr2jekMWU
BoX6fXpTaUMBsFzOGwcSJHnRnj+0ULt/eO7Lss0EOc1k5x7TWqpoKQ4KJ+jT
q+35bK1tpHsfpkUS1DHeWbrKkoL5sKJhOpEg5HpmPsmcgqpCW2/mdYIcXWy3
WHAoiDEiLddvE3T7SNHlElMKnEWPQvzKCQLx0m4vrTM3bN+fWkMQ6V26L9KE
grjJq5f0ZQRZli6qlBpRsHzrAZvCboLe6F0yW6/1wOPVN316CTK2MoqXG1IQ
nN396OcxgqJTddf/Y0ABS68kwI4QpLf1p7vntcZRopd1fxPUTGbtHLU+1ukX
sfMjQWGn43+toin4/7+QIGzKdKPW/wI/lDle
"]]},
Annotation[#, "Charting`Private`Tag$2725#4"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.528488, 0.470624, 0.701351],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwt1Hs0lHkYB3C875hbuaaS+6UbjqiwpP09Kwob4iSzW2F0SJOWZpNx7LZp