-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathinverse_warp_summary.py
433 lines (340 loc) · 16.8 KB
/
inverse_warp_summary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
from __future__ import division
import torch
from torch.autograd import Variable
from scipy.sparse import coo_matrix
pixel_coords = None
def set_id_grid(depth):
global pixel_coords
b, h, w = depth.size()
i_range = Variable(torch.arange(0, h).view(1, h, 1).expand(1,h,w)).type_as(depth) # [1, H, W]
j_range = Variable(torch.arange(0, w).view(1, 1, w).expand(1,h,w)).type_as(depth) # [1, H, W]
ones = Variable(torch.ones(1,h,w)).type_as(depth)
pixel_coords = torch.stack((j_range, i_range, ones), dim=1) # [1, 3, H, W]
# del (ones)
def check_sizes(input, input_name, expected):
condition = [input.ndimension() == len(expected)]
for i,size in enumerate(expected):
if size.isdigit():
condition.append(input.size(i) == int(size))
assert(all(condition)), "wrong size for {}, expected {}, got {}".format(input_name, 'x'.join(expected), list(input.size()))
def pixel2cam(depth, intrinsics_inv):
global pixel_coords
"""Transform coordinates in the pixel frame to the camera frame.
Args:
depth: depth maps -- [B, H, W]
intrinsics_inv: intrinsics_inv matrix for each element of batch -- [B, 3, 3]
Returns:
array of (u,v,1) cam coordinates -- [B, 3, H, W]
"""
b, h, w = depth.size()
if (pixel_coords is None) or pixel_coords.size(2) != h or pixel_coords.size(3) != w:
set_id_grid(depth)
current_pixel_coords = pixel_coords[:,:,:h,:w].expand(b,3,h,w).contiguous().view(b, 3, -1) # [B, 3, H*W]
cam_coords = intrinsics_inv.bmm(current_pixel_coords).view(b, 3, h, w)
return cam_coords * depth.unsqueeze(1)
def cam2pixel(cam_coords, proj_c2p_rot, proj_c2p_tr, padding_mode):
"""Transform coordinates in the camera frame to the pixel frame.
Args:
cam_coords: pixel coordinates defined in the first camera coordinates system -- [B, 4, H, W]
proj_c2p_rot: rotation matrix of cameras -- [B, 3, 4]
proj_c2p_tr: translation vectors of cameras -- [B, 3, 1]
Returns:
array of [-1,1] coordinates -- [B, H, W, 2]
"""
b, _, h, w = cam_coords.size()
cam_coords_flat = cam_coords.view(b, 3, -1) # [B, 3, H*W]
if proj_c2p_rot is not None:
pcoords = proj_c2p_rot.bmm(cam_coords_flat)
else:
pcoords = cam_coords_flat
if proj_c2p_tr is not None:
pcoords = pcoords + proj_c2p_tr # [B, 3, H*W]
X = pcoords[:, 0]
Y = pcoords[:, 1]
Z = pcoords[:, 2].clamp(min=1e-3)
X_norm = 2*(X / Z)/(w-1) - 1 # Normalized, -1 if on extreme left, 1 if on extreme right (x = w-1) [B, H*W]
Y_norm = 2*(Y / Z)/(h-1) - 1 # Idem [B, H*W]
if padding_mode == 'zeros':
X_mask = ((X_norm > 1)+(X_norm < -1)).detach()
X_norm[X_mask] = 2 # make sure that no point in warped image is a combinaison of im and gray
Y_mask = ((Y_norm > 1)+(Y_norm < -1)).detach()
Y_norm[Y_mask] = 2
pixel_coords = torch.stack([X_norm, Y_norm], dim=2) # [B, H*W, 2]
return pixel_coords.view(b,h,w,2)
def euler2mat(angle):
"""Convert euler angles to rotation matrix.
Reference: https://github.com/pulkitag/pycaffe-utils/blob/master/rot_utils.py#L174
Args:
angle: rotation angle along 3 axis (in radians) -- size = [B, 3]
Returns:
Rotation matrix corresponding to the euler angles -- size = [B, 3, 3]
"""
B = angle.size(0)
x, y, z = angle[:,0], angle[:,1], angle[:,2]
cosz = torch.cos(z)
sinz = torch.sin(z)
zeros = z.detach()*0
ones = zeros.detach()+1
zmat = torch.stack([cosz, -sinz, zeros,
sinz, cosz, zeros,
zeros, zeros, ones], dim=1).view(B, 3, 3)
cosy = torch.cos(y)
siny = torch.sin(y)
ymat = torch.stack([cosy, zeros, siny,
zeros, ones, zeros,
-siny, zeros, cosy], dim=1).view(B, 3, 3)
cosx = torch.cos(x)
sinx = torch.sin(x)
xmat = torch.stack([ones, zeros, zeros,
zeros, cosx, -sinx,
zeros, sinx, cosx], dim=1).view(B, 3, 3)
rotMat = xmat.bmm(ymat).bmm(zmat)
return rotMat
def quat2mat(quat):
"""Convert quaternion coefficients to rotation matrix.
Args:
quat: first three coeff of quaternion of rotation. fourht is then computed to have a norm of 1 -- size = [B, 3]
Returns:
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
"""
norm_quat = torch.cat([quat[:,:1].detach()*0 + 1, quat], dim=1)
norm_quat = norm_quat/norm_quat.norm(p=2, dim=1, keepdim=True)
w, x, y, z = norm_quat[:,0], norm_quat[:,1], norm_quat[:,2], norm_quat[:,3]
B = quat.size(0)
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
wx, wy, wz = w*x, w*y, w*z
xy, xz, yz = x*y, x*z, y*z
rotMat = torch.stack([w2 + x2 - y2 - z2, 2*xy - 2*wz, 2*wy + 2*xz,
2*wz + 2*xy, w2 - x2 + y2 - z2, 2*yz - 2*wx,
2*xz - 2*wy, 2*wx + 2*yz, w2 - x2 - y2 + z2], dim=1).view(B, 3, 3)
return rotMat
def pose_vec2mat(vec, rotation_mode='euler'):
"""
Convert 6DoF parameters to transformation matrix.
Args:s
vec: 6DoF parameters in the order of tx, ty, tz, rx, ry, rz -- [B, 6]
Returns:
A transformation matrix -- [B, 3, 4]
"""
translation = vec[:, :3].unsqueeze(-1) # [B, 3, 1]
rot = vec[:,3:]
if rotation_mode == 'euler':
rot_mat = euler2mat(rot) # [B, 3, 3]
elif rotation_mode == 'quat':
rot_mat = quat2mat(rot) # [B, 3, 3]
transform_mat = torch.cat([rot_mat, translation], dim=2) # [B, 3, 4]
return transform_mat
def pose_vec2mat_revised(vec, rotation_mode='euler'):
"""
Convert 6DoF parameters to transformation matrix.
Args:s
vec: 6DoF parameters in the order of tx, ty, tz, rx, ry, rz -- [B, 6]
Returns:
A transformation matrix -- [B, 3, 4]
"""
translation = vec[:, :3].unsqueeze(-1) # [B, 3, 1]
rot = vec[:,3:]
if rotation_mode == 'euler':
rot_mat = euler2mat(rot) # [B, 3, 3]
elif rotation_mode == 'quat':
rot_mat = quat2mat(rot) # [B, 3, 3]
transform_mat = torch.cat([rot_mat, translation], dim=2) # [B, 3, 4]
b, _, _ = transform_mat.size()
filler = Variable(torch.FloatTensor([[[0.0, 0.0, 0.0, 1.0]]])).type_as(transform_mat).expand(b, 1, 4)
transform_mat = torch.cat([transform_mat, filler], dim=1)# [B, 4, 4]
return transform_mat
def flow_warp(img, flow, padding_mode='zeros'):
"""
Inverse warp a source image to the target image plane.
Args:
img: the source image (where to sample pixels) -- [B, 3, H, W]
flow: flow map of the target image -- [B, 2, H, W]
Returns:
Source image warped to the target image plane
"""
check_sizes(img, 'img', 'BCHW')
check_sizes(flow, 'flow', 'B2HW')
bs, _, h, w = flow.size()
u = flow[:,0,:,:]
v = flow[:,1,:,:]
grid_x = Variable(torch.arange(0, w).view(1, 1, w).expand(1,h,w), requires_grad=False).type_as(u).expand_as(u) # [bs, H, W]
grid_y = Variable(torch.arange(0, h).view(1, h, 1).expand(1,h,w), requires_grad=False).type_as(v).expand_as(v) # [bs, H, W]
X = grid_x + u
Y = grid_y + v
X = 2*(X/(w-1.0) - 0.5)
Y = 2*(Y/(h-1.0) - 0.5)
grid_tf = torch.stack((X,Y), dim=3)
img_tf = torch.nn.functional.grid_sample(img, grid_tf, padding_mode=padding_mode)
return img_tf
def pose2flow(depth, pose, intrinsics, intrinsics_inv, rotation_mode='euler', padding_mode=None):
"""
Converts pose parameters to rigid optical flow
"""
check_sizes(depth, 'depth', 'BHW')
check_sizes(pose, 'pose', 'B6')
check_sizes(intrinsics, 'intrinsics', 'B33')
check_sizes(intrinsics_inv, 'intrinsics', 'B33')
assert(intrinsics_inv.size() == intrinsics.size())
bs, h, w = depth.size()
grid_x = Variable(torch.arange(0, w).view(1, 1, w).expand(1,h,w), requires_grad=False).type_as(depth).expand_as(depth) # [bs, H, W]
grid_y = Variable(torch.arange(0, h).view(1, h, 1).expand(1,h,w), requires_grad=False).type_as(depth).expand_as(depth) # [bs, H, W]
cam_coords = pixel2cam(depth, intrinsics_inv) # [B,3,H,W]
pose_mat = pose_vec2mat(pose, rotation_mode) # [B,3,4]
# Get projection matrix for tgt camera frame to source pixel frame
proj_cam_to_src_pixel = intrinsics.bmm(pose_mat) # [B, 3, 4]
src_pixel_coords = cam2pixel(cam_coords, proj_cam_to_src_pixel[:,:,:3], proj_cam_to_src_pixel[:,:,-1:], padding_mode) # [B,H,W,2]
X = (w-1)*(src_pixel_coords[:,:,:,0]/2.0 + 0.5) - grid_x
Y = (h-1)*(src_pixel_coords[:,:,:,1]/2.0 + 0.5) - grid_y
return torch.stack((X,Y), dim=1)
def flow2oob(flow):
check_sizes(flow, 'flow', 'B2HW')
bs, _, h, w = flow.size()
u = flow[:,0,:,:]
v = flow[:,1,:,:]
grid_x = Variable(torch.arange(0, w).view(1, 1, w).expand(1,h,w), requires_grad=False).type_as(u).expand_as(u) # [bs, H, W]
grid_y = Variable(torch.arange(0, h).view(1, h, 1).expand(1,h,w), requires_grad=False).type_as(v).expand_as(v) # [bs, H, W]
X = grid_x + u
Y = grid_y + v
X = 2*(X/(w-1.0) - 0.5)
Y = 2*(Y/(h-1.0) - 0.5)
oob = (X.abs()>1).add(Y.abs()>1)>0
return oob
def occlusion_mask(grid, depth):
check_sizes(img, 'grid', 'BHW2')
check_sizes(depth, 'depth', 'BHW')
mask = grid
return mask
def inverse_warp(img, depth, pose, intrinsics, intrinsics_inv, rotation_mode='euler', padding_mode='zeros', reverse_pose=False, maskp01=False, maskp01_duoci=False, maskp01_qian=None):
"""
Inverse warp a source image to the target image plane.
Args:
img: the source image (where to sample pixels) -- [B, 3, H, W]
depth: depth map of the target image -- [B, H, W]
pose: 6DoF pose parameters from target to source -- [B, 6]
intrinsics: camera intrinsic matrix -- [B, 3, 3]
intrinsics_inv: inverse of the intrinsic matrix -- [B, 3, 3]
Returns:
Source image warped to the target image plane
"""
check_sizes(img, 'img', 'B3HW')
check_sizes(depth, 'depth', 'BHW')
check_sizes(pose, 'pose', 'B6')
check_sizes(intrinsics, 'intrinsics', 'B33')
check_sizes(intrinsics_inv, 'intrinsics', 'B33')
assert(intrinsics_inv.size() == intrinsics.size())
batch_size, _, img_height, img_width = img.size()
cam_coords = pixel2cam(depth, intrinsics_inv) # [B,3,H,W]
pose_mat = pose_vec2mat_revised(pose, rotation_mode) # [B,3,4]
if reverse_pose:
pose_mat = torch.inverse(pose_mat)
# Get projection matrix for tgt camera frame to source pixel frame
ones = Variable(torch.zeros([batch_size, 3, 1])).type_as(intrinsics)
intrinsics = torch.cat([intrinsics, ones], dim=2)
filler = Variable(torch.FloatTensor([[[0.0, 0.0, 0.0, 1.0]]])).type_as(intrinsics).expand(batch_size, 1, 4)
intrinsics = torch.cat([intrinsics, filler], dim=1)# [B, 4, 4]
# del (ones)
# del (filler)
proj_cam_to_src_pixel = intrinsics.bmm(pose_mat) # [B, 3, 4]
src_pixel_coords = cam2pixel(cam_coords, proj_cam_to_src_pixel[:,:,:3], proj_cam_to_src_pixel[:,:,-1:], padding_mode) # [B,H,W,2]
# print(src_pixel_coords)
# coords_x = (img_width - 1) * (src_pixel_coords[:, :, :, 0] / 2.0 + 0.5)
# coords_y = (img_height - 1) * (src_pixel_coords[:, :, :, 1] / 2.0 + 0.5)
# print(coords_x.size())
# print(coords_x)
projected_img = torch.nn.functional.grid_sample(img, src_pixel_coords, padding_mode=padding_mode)
if maskp01:
cam_coords_T = cam2cam(cam_coords, pose_mat)
mask_p, mask0, mask1 = mask_p01(depth, src_pixel_coords, cam_coords_T)
return projected_img, mask_p, mask0, mask1
if maskp01_duoci: #
mask1 = mask_p01_duoci(src_pixel_coords, maskp01_qian)
return mask1
else:
return projected_img
def cam2cam(cam_coords, pose):
"""Transforms coordinates in a camera frame to the pixel frame.
Args:
cam_coords: [batch, 4, height, width]
pose: A transformation matrix -- [B, 3, 4]
Returns:
cam_coords_T: [batch, 3, height, width]
"""
batch, _, height, width = cam_coords.size()
ones = Variable(torch.ones([batch, 1, height, width])).type_as(cam_coords)
cam_coords = torch.cat([cam_coords, ones], dim=1).view(batch, 4, height*width)
# del (ones)
# cam_coords = cam_coords
cam_coords_T = pose.bmm(cam_coords)
cam_coords_T=cam_coords_T.view(batch, 4, height, width)
# print(cam_coords_T.size())
# cam_coords_T = cam_coords_T
return cam_coords_T[:, :3, :, :]
def mask_p01(depth, coords, cam_coords_T):
b, h, w, _ = coords.size()
x0 = torch.floor((w - 1) * (coords[:, :, :, 0] / 2.0 + 0.5).float()).float().cuda()
x1 = (x0 + 1).float().cuda()
y0 = torch.floor((h - 1) * (coords[:, :, :, 1] / 2.0 + 0.5).float()).float().cuda()
y1 = (y0 + 1).float().cuda()
mask_p_luoji = (x0 >= torch.zeros_like(x0).float().cuda())*(x1 <= torch.Tensor([depth.size()[2] - 1]).float().cuda())*(y0 >= torch.zeros_like(x0).float().cuda())*(y1 <= torch.Tensor([depth.size()[1] - 1]).float().cuda())
mask_p = mask_p_luoji.float()
euclidean = torch.sqrt(torch.sum(torch.pow(cam_coords_T, 2), 1)).view(b, -1)
fuer_like = -2 * torch.ones_like(x0).cuda()
x0 = torch.where(mask_p_luoji, x0, fuer_like)
y0 = torch.where(mask_p_luoji, y0, fuer_like)
xy00 = torch.stack([x0, y0], dim=3).cuda()
for i in range(b):
euclideani = euclidean[i, :].view(1, -1)
xy00_batchi = xy00[i, :, :, :].view(-1, 2).int()
unique_xy00_batchi, ids = torch.unique(xy00_batchi[:, 0] * w + xy00_batchi[:, 1],return_inverse=True)
outputs = coo_matrix((torch.squeeze(1.0 / euclideani, 0).cuda().cpu(), (ids.long().cuda().cpu(), torch.arange(0, euclideani.size()[1] ).long().cuda().cpu())), shape=(unique_xy00_batchi.size()[0], euclideani.size()[1])).max(1)
outputs = torch.squeeze(torch.from_numpy(outputs.toarray()).cuda())
zuixiaojuli = torch.unsqueeze(torch.gather(1.0 / outputs, 0, torch.squeeze(ids).cuda()), 0).float()
mask0 = torch.unsqueeze(torch.where(zuixiaojuli==euclideani,
torch.ones_like(zuixiaojuli).cuda(), torch.zeros_like(zuixiaojuli).cuda()).view(h, w), 0)
xy00_batchi = xy00_batchi.float().cuda()
xy10_batchi = xy00_batchi + torch.Tensor([1., 0.]).cuda()
xy01_batchi = xy00_batchi + torch.Tensor([0., 1.]).cuda()
xy11_batchi = xy00_batchi + torch.Tensor([1., 1.]).cuda()
touying = torch.cat([xy00_batchi[:, 1] * w + xy00_batchi[:, 0], xy10_batchi[:, 1] * w + xy10_batchi[:, 0], xy01_batchi[:, 1] * w + xy01_batchi[:, 0], xy11_batchi[:, 1] * w + xy11_batchi[:, 0]], dim=0).long()
mask1 = torch.zeros(h * w).cuda()
mask1[touying] = 1
mask1 = torch.unsqueeze(mask1.view(h, w), 0)
if i == 0:
mask0_stack = mask0
mask1_stack = mask1
else:
mask0_stack = torch.cat([mask0_stack, mask0], dim=0)
mask1_stack = torch.cat([mask1_stack, mask1], dim=0)
return mask_p, mask0_stack, mask1_stack
def mask_p01_duoci(coords, maskp01_qian):
b, h, w, _ = coords.size()
x0 = torch.floor((w - 1) * (coords[:, :, :, 0] / 2.0 + 0.5).float()).float().cuda()
y0 = torch.floor((h - 1) * (coords[:, :, :, 1] / 2.0 + 0.5).float()).float().cuda()
# maskp_qian_luoji = torch.eq(maskp_qian.cuda(), torch.ones_like(maskp_qian).cuda())
# mask1_qian_luoji = torch.eq(mask1_qian.cuda(), torch.ones_like(mask1_qian).cuda())
# mask0_qian_luoji = torch.eq(mask0_qian.cuda(), torch.ones_like(mask0_qian).cuda())
maskp01_qian_luoji = torch.eq(maskp01_qian.cuda(), torch.ones_like(maskp01_qian).cuda())
fuer_like = -2 * torch.ones_like(x0).cuda()
# x0 = torch.where(maskp_qian_luoji, x0, fuer_like)
# y0 = torch.where(maskp_qian_luoji, y0, fuer_like)
# x0 = torch.where(mask1_qian_luoji, x0, fuer_like)
# y0 = torch.where(mask1_qian_luoji, y0, fuer_like)
# x0 = torch.where(mask0_qian_luoji, x0, fuer_like)
# y0 = torch.where(mask0_qian_luoji, y0, fuer_like)
x0 = torch.where(maskp01_qian_luoji, x0, fuer_like)
y0 = torch.where(maskp01_qian_luoji, y0, fuer_like)
xy00 = torch.stack([x0, y0], dim=3).cuda()
for i in range(b):
xy00_batchi = xy00[i, :, :, :].view(-1, 2).float().cuda()
xy10_batchi = xy00_batchi + torch.Tensor([1., 0.]).cuda()
xy01_batchi = xy00_batchi + torch.Tensor([0., 1.]).cuda()
xy11_batchi = xy00_batchi + torch.Tensor([1., 1.]).cuda()
touying = torch.cat([xy00_batchi[:, 1] * w + xy00_batchi[:, 0], xy10_batchi[:, 1] * w + xy10_batchi[:, 0], xy01_batchi[:, 1] * w + xy01_batchi[:, 0], xy11_batchi[:, 1] * w + xy11_batchi[:, 0]], dim=0).long()
mask1 = torch.zeros(h * w).cuda()
mask1[touying] = 1
mask1 = torch.unsqueeze(mask1.view(h, w), 0)
if i == 0:
mask1_stack = mask1
else:
mask1_stack = torch.cat([mask1_stack, mask1], dim=0)
return mask1_stack