Skip to content

Latest commit

 

History

History
606 lines (334 loc) · 9.48 KB

README.md

File metadata and controls

606 lines (334 loc) · 9.48 KB

gesundheitsaemter

The goal of gesundheitsaemter is to provide data sets for the analysis of German Health Authorities (Gesundheitsaemter). The package includes five different data sets collected from three different sources.

Data set name Content data source URL
health_departments General overview of German Health Authorities (Gesundheitsaemter) link
authority_zip_range All possible zip codes that are assigned to the health authority link
communities All possible community names, be reminded that one community can have several zip codes and vice versa link
population_zip Population and area assigned to every German zip code link
metadata_rki Contact information and further information about the health authority link
metadata_google Geo location in the health department data set is generated using the google maps api with the R package ggmap, this file includes or meta data of this interface link

Installation or Import

You can install the released version of gesundheitsaemter from Github with:

devtools::install_github("gstephan30/gesundheitsaemter")

For users not wanting to install the data, direct download links are:

Merging the data

Every data set has an individual identifier for merging, this can be seen here:

<style> .aligncenter { text-align: center; } </style>

how to merge

Explore Data

The primary data set with an overview of all German Health Authorities is health_departments:

library(gesundheitsaemter)
health_departments
#> # A tibble: 399 x 8
#>    authority_id name      department      street    postalcode place  long   lat
#>    <chr>        <chr>     <chr>           <chr>     <chr>      <chr> <dbl> <dbl>
#>  1 1            Stadt Fl~ Fachbereich 2 ~ Norderst~ 24939      Flen~  9.43  54.8
#>  2 2            Landesha~ Amt für Gesund~ Fleethör~ 24103      Kiel  10.1   54.3
#>  3 3            Hansesta~ Gesundheitsamt  Sophiens~ 23560      Lübe~ 10.7   53.9
#>  4 4            Stadt Ne~ Gesundheitsamt  Meßtorff~ 24534      Neum~  9.99  54.1
#>  5 5            Kreis Di~ Fachdienst Ges~ Esmarchs~ 25746      Heide  9.08  54.2
#>  6 6            Kreis No~ Fachdienst Ges~ Damm 8    25813      Husum  9.05  54.5
#>  7 7            Kreis Os~ Fachdienst Ges~ Holstens~ 23701      Eutin 10.6   54.1
#>  8 8            Kreisver~ Fachdienst Ges~ Kurt-Wag~ 25337      Elms~  9.70  53.7
#>  9 9            Kreis Re~ Fachdienst 4.3~ Kaiserst~ 24768      Rend~  9.67  54.3
#> 10 10           Kreis Sc~ Fachdienst Ges~ Moltkest~ 24837      Schl~  9.56  54.5
#> # ... with 389 more rows

With merging you can inspect the population covered by each health authority. For demonstration purposes we are just interested in health authorities of assigned to the city of Berlin.

library(dplyr)

berlin_departments <- health_departments %>% 
  filter(place == "Berlin") %>% 
  select(authority_id, name, long, lat) %>% 
  left_join(
    authority_zip_range
  ) %>% 
  left_join(
    population_zip
  ) %>% 
  group_by(authority_id, name, long, lat) %>% 
  summarise(total_population = sum(population, na.rm = TRUE)) %>% 
  arrange(desc(total_population))

berlin_departments %>% 
  knitr::kable("html") %>% 
  kableExtra::kable_styling("striped")

authority_id

name

long

lat

total_population

191

Bezirksamt Pankow von Berlin

13.40958

52.56722

427902

189

Bezirksamt Mitte von Berlin

13.32961

52.56222

386250

195

Bezirksamt Tempelhof-Schöneberg von Berlin

13.37914

52.44589

360322

192

Bezirksamt Charlottenburg-Wilmersdorf von Berlin

13.31146

52.48909

338414

196

Bezirksamt Neukölln von Berlin

13.44643

52.45255

314923

194

Bezirksamt Steglitz-Zehlendorf von Berlin

13.32567

52.45743

305501

190

Bezirksamt Friedrichshain-Kreuzberg von Berlin

13.40984

52.49247

256021

200

Bezirksamt Reinickendorf von Berlin

13.34767

52.57113

254399

199

Bezirksamt Lichtenberg von Berlin

13.52422

52.50767

252169

198

Bezirksamt Marzahn-Hellersdorf von Berlin

13.60615

52.53863

243939

197

Bezirksamt Treptow-Köpenick von Berlin

13.53302

52.43471

238613

193

Bezirksamt Spandau von Berlin

13.20109

52.53530

215305

399

Zentrum für tuberkulosekranke und -gefährdete Menschen, Berlin

13.47689

52.51557

0

Plotting in relation to the covered population:

library(leaflet)

berlin_departments %>% 
  leaflet() %>% 
  addTiles() %>% 
  addCircleMarkers(
    lng = ~long, 
    lat = ~lat, 
    fill = ~total_population, 
    radius = ~total_population/10000, 
    label = ~paste0(name, ", Population: ", total_population))