-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNatDed.agda
78 lines (59 loc) · 1.96 KB
/
NatDed.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
module NatDed where
open import Prop
open import Ctx
infix 20 _⊢_
private
variable
A B C : `Prop
Γ Δ : Ctx
data _⊢_ : Ctx → `Prop → Set where
ass : Γ ∋ A
→ Γ ⊢ A
∧I : Γ ⊢ A
→ Γ ⊢ B
→ Γ ⊢ A `∧ B
∧E₁ : Γ ⊢ A `∧ B
→ Γ ⊢ A
∧E₂ : Γ ⊢ A `∧ B
→ Γ ⊢ B
⊃I : Γ , A ⊢ B
→ Γ ⊢ A `⊃ B
⊃E : Γ ⊢ A `⊃ B
→ Γ ⊢ A
→ Γ ⊢ B
∨I₁ : Γ ⊢ A
→ Γ ⊢ A `∨ B
∨I₂ : Γ ⊢ B
→ Γ ⊢ A `∨ B
∨E : Γ ⊢ A `∨ B
→ Γ , A ⊢ C
→ Γ , B ⊢ C
→ Γ ⊢ C
⊤I : Γ ⊢ `⊤
⊥E : Γ ⊢ `⊥
→ Γ ⊢ C
struct : (Γ ⊆ Δ) → Γ ⊢ C → Δ ⊢ C
struct Γ⊆Δ (ass x) = ass (Γ⊆Δ x)
struct Γ⊆Δ (∧I x y) = ∧I (struct Γ⊆Δ x) (struct Γ⊆Δ y)
struct Γ⊆Δ (∧E₁ x) = ∧E₁ (struct Γ⊆Δ x)
struct Γ⊆Δ (∧E₂ x) = ∧E₂ (struct Γ⊆Δ x)
struct Γ⊆Δ (⊃I x) = ⊃I (struct (⊆-step Γ⊆Δ) x)
struct Γ⊆Δ (⊃E x y) = ⊃E (struct Γ⊆Δ x) (struct Γ⊆Δ y)
struct Γ⊆Δ (∨I₁ x) = ∨I₁ (struct Γ⊆Δ x)
struct Γ⊆Δ (∨I₂ x) = ∨I₂ (struct Γ⊆Δ x)
struct Γ⊆Δ (∨E x y z) = ∨E (struct Γ⊆Δ x) (struct (⊆-step Γ⊆Δ) y) (struct (⊆-step Γ⊆Δ) z)
struct Γ⊆Δ ⊤I = ⊤I
struct Γ⊆Δ (⊥E x) = ⊥E (struct Γ⊆Δ x)
private
-- examples
ex₀ : · ⊢ A `⊃ B `⊃ A `∧ B
ex₀ = ⊃I (⊃I (∧I (ass (S Z)) (ass Z)))
ex₁ : · ⊢ (A `⊃ B `∧ C) `⊃ (A `⊃ B) `∧ (A `⊃ C)
ex₁ = ⊃I (∧I (⊃I (∧E₁ (⊃E (ass (S Z)) (ass Z))))
(⊃I (∧E₂ (⊃E (ass (S Z)) (ass Z)))))
ex₂ : · ⊢ A `⊃ A
ex₂ = ⊃I (ass Z)
-- we can have two different proofs for the same proposition
-- where this one takes a detour
ex₃ : · ⊢ A `⊃ A
ex₃ = ⊃I (⊃E (⊃I (ass Z)) (ass Z))