forked from sniklaus/3d-ken-burns
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterface.py
212 lines (166 loc) · 6.52 KB
/
interface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#!/usr/bin/env python
import torch
import torchvision
import base64
import cupy
import cv2
import flask
import getopt
import gevent
import gevent.pywsgi
import h5py
import io
import math
import moviepy
import moviepy.editor
import numpy
import os
import random
import re
import scipy
import scipy.io
import shutil
import sys
import tempfile
import time
import urllib
import zipfile
##########################################################
assert(int(str('').join(torch.__version__.split('.')[0:3])) >= 120) # requires at least pytorch version 1.2.0
torch.set_grad_enabled(False) # make sure to not compute gradients for computational performance
torch.backends.cudnn.enabled = True # make sure to use cudnn for computational performance
##########################################################
objectCommon = {}
exec(open('./common.py', 'r').read())
exec(open('./models/disparity-estimation.py', 'r').read())
exec(open('./models/disparity-adjustment.py', 'r').read())
exec(open('./models/disparity-refinement.py', 'r').read())
exec(open('./models/pointcloud-inpainting.py', 'r').read())
##########################################################
objectPlayback = {
'strImage': None,
'numpyImage': None,
'strMode': 'automatic',
'intTime': 0,
'dblTime': numpy.linspace(0.0, 1.0, 75).tolist() + list(reversed(numpy.linspace(0.0, 1.0, 75).tolist())),
'strCache': {},
'objectFrom': {
'dblCenterU': 512.0,
'dblCenterV': 384.0,
'intCropWidth': 1024,
'intCropHeight': 768
},
'objectTo': {
'dblCenterU': 512.0,
'dblCenterV': 384.0,
'intCropWidth': 1024,
'intCropHeight': 768
}
}
objectFlask = flask.Flask(import_name=__name__, static_url_path='', static_folder=os.path.abspath('./'))
@objectFlask.route(rule='/', methods=[ 'GET' ])
def index():
return objectFlask.send_static_file('interface.html')
# end
@objectFlask.route(rule='/load_image', methods=[ 'POST' ])
def load_image():
objectPlayback['strImage'] = flask.request.form['strFile']
objectPlayback['numpyImage'] = numpy.ascontiguousarray(cv2.imdecode(buf=numpy.fromstring(base64.b64decode(flask.request.form['strData'].split(';base64,')[1]), numpy.uint8), flags=-1)[:, :, 0:3])
objectPlayback['strCache'] = {}
process_load(objectPlayback['numpyImage'], {})
for dblX, dblY in [ (100.0, 0.0), (-100.0, 0.0), (0.0, 100.0), (0.0, -100.0) ]:
process_inpaint(torch.FloatTensor([ dblX, dblY, 0.0 ]).view(1, 3, 1).cuda())
# end
return ''
# end
@objectFlask.route(rule='/autozoom', methods=[ 'POST' ])
def autozoom():
objectPlayback['objectFrom'] = {
'dblCenterU': 512.0,
'dblCenterV': 384.0,
'intCropWidth': 1000,
'intCropHeight': 750
}
objectPlayback['objectTo'] = process_autozoom({
'dblShift': 100.0,
'dblZoom': 1.25,
'objectFrom': objectPlayback['objectFrom']
})
return flask.jsonify({
'objectFrom': objectPlayback['objectFrom'],
'objectTo': objectPlayback['objectTo']
})
# end
@objectFlask.route(rule='/update_mode', methods=[ 'POST' ])
def update_mode():
objectPlayback['strMode'] = flask.request.form['strMode']
return ''
# end
@objectFlask.route(rule='/update_from', methods=[ 'POST' ])
def update_from():
objectPlayback['intTime'] = objectPlayback['dblTime'].index(0.0)
objectPlayback['strCache'] = {}
objectPlayback['objectFrom']['dblCenterU'] = float(flask.request.form['dblCenterU'])
objectPlayback['objectFrom']['dblCenterV'] = float(flask.request.form['dblCenterV'])
objectPlayback['objectFrom']['intCropWidth'] = int(flask.request.form['intCropWidth'])
objectPlayback['objectFrom']['intCropHeight'] = int(flask.request.form['intCropHeight'])
return ''
# end
@objectFlask.route(rule='/update_to', methods=[ 'POST' ])
def update_to():
objectPlayback['intTime'] = objectPlayback['dblTime'].index(1.0)
objectPlayback['strCache'] = {}
objectPlayback['objectTo']['dblCenterU'] = float(flask.request.form['dblCenterU'])
objectPlayback['objectTo']['dblCenterV'] = float(flask.request.form['dblCenterV'])
objectPlayback['objectTo']['intCropWidth'] = int(flask.request.form['intCropWidth'])
objectPlayback['objectTo']['intCropHeight'] = int(flask.request.form['intCropHeight'])
return ''
# end
@objectFlask.route(rule='/get_live', methods=[ 'GET' ])
def get_live():
def generator():
dblFramelimiter = 0.0
while True:
for intYield in range(100): gevent.sleep(0.0)
gevent.sleep(max(0.0, (1.0 / 25.0) - (time.time() - dblFramelimiter))); dblFramelimiter = time.time()
if objectPlayback['strImage'] is None:
yield b'--frame\r\nContent-Type: image/jpeg\r\n\r\n' + cv2.imencode(ext='.jpg', img=numpy.ones([ 768, 1024, 3 ], numpy.uint8) * 29, params=[ cv2.IMWRITE_JPEG_QUALITY, 80 ])[1].tobytes() + b'\r\n'; continue
# end
if objectPlayback['intTime'] > len(objectPlayback['dblTime']) - 1:
objectPlayback['intTime'] = 0
# end
intTime = objectPlayback['intTime']
dblTime = objectPlayback['dblTime'][intTime]
if objectPlayback['strMode'] == 'automatic':
objectPlayback['intTime'] += 1
# end
if str(dblTime) not in objectPlayback['strCache']:
numpyKenburns = process_kenburns({
'dblSteps': [ dblTime ],
'objectFrom': objectPlayback['objectFrom'],
'objectTo': objectPlayback['objectTo'],
'boolInpaint': False
})[0]
objectPlayback['strCache'][str(dblTime)] = b'--frame\r\nContent-Type: image/jpeg\r\n\r\n' + cv2.imencode(ext='.jpg', img=numpyKenburns, params=[ cv2.IMWRITE_JPEG_QUALITY, 80 ])[1].tobytes() + b'\r\n'
# end
yield objectPlayback['strCache'][str(dblTime)]
# end
# end
return flask.Response(response=generator(), mimetype='multipart/x-mixed-replace; boundary=frame')
# end
@objectFlask.route(rule='/get_result', methods=[ 'GET' ])
def get_result():
strTempdir = tempfile.gettempdir() + '/kenburns-' + str(os.getpid()) + '-' + str.join('', [ random.choice('abcdefghijklmnopqrstuvwxyz0123456789') for intCount in range(20) ])
os.makedirs(strTempdir + '/')
numpyKenburns = process_kenburns({
'dblSteps': numpy.linspace(0.0, 1.0, 75).tolist(),
'objectFrom': objectPlayback['objectFrom'],
'objectTo': objectPlayback['objectTo'],
'boolInpaint': True
})
moviepy.editor.ImageSequenceClip(sequence=[ numpyFrame[:, :, ::-1] for numpyFrame in numpyKenburns + list(reversed(numpyKenburns))[1:] ], fps=25).write_videofile(strTempdir + '/kenburns.mp4')
objectKenburns = io.BytesIO(open(strTempdir + '/kenburns.mp4', 'rb').read())
shutil.rmtree(strTempdir + '/')
return flask.send_file(filename_or_fp=objectKenburns, mimetype='video/mp4', as_attachment=True, attachment_filename='kenburns.mp4', cache_timeout=-1)
# end
gevent.pywsgi.WSGIServer(listener=('0.0.0.0', 8080), application=objectFlask).serve_forever()