You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I'm not sure whether it is caused by the maxpooling in my network.
After feature extraction by CNN (B,C,14,14),
My final layer : nn.MaxPool2d(14,1,0) -> view(output.size(0), self.num_classes) where self.num_classes=8
RuntimeError: inconsistent tensor size, expected r_ [1 x 8], t [1 x 8] and src [1 x 8 x 14 x 14] to have the same number of elements, but got 8, 8 and 1568 elements respectively at /opt/conda/conda-bld/pytorch_1518243271935/work/torch/lib/TH/generic/THTensorMath.c:1063
The text was updated successfully, but these errors were encountered:
Hi @greydanus
I'm not sure whether it is caused by the maxpooling in my network.
After feature extraction by CNN (B,C,14,14),
My final layer : nn.MaxPool2d(14,1,0) -> view(output.size(0), self.num_classes) where self.num_classes=8
prob_outputs_dog = Variable(torch.zeros(1,8)) ; prob_outputs_dog.data[:,dog] += 1
prob_inputs_dog = eb.excitation_backprop(model, inputs, prob_outputs_dog, contrastive=False)
And the error I got is
RuntimeError Traceback (most recent call last)
in ()
9
10
---> 11 prob_inputs_chair = eb.excitation_backprop(model, inputs, prob_outputs_chair, contrastive=False)
~/anaconda2/envs/exbp/lib/python3.6/site-packages/excitationbp-0.1-py3.6.egg/excitationbp/utils.py in excitation_backprop(model, inputs, prob_outputs, contrastive, target_layer)
45 if not contrastive:
46 outputs = model(inputs)
---> 47 return torch.autograd.grad(top_h_, target_h_, grad_outputs=prob_outputs)[0]
48
49 pos_evidence = torch.autograd.grad(top_h_, contr_h_, grad_outputs=prob_outputs.clone())[0]
~/anaconda2/envs/exbp/lib/python3.6/site-packages/torch/autograd/init.py in grad(outputs, inputs, grad_outputs, retain_graph, create_graph, only_inputs, allow_unused)
156 return Variable._execution_engine.run_backward(
157 outputs, grad_outputs, retain_graph,
--> 158 inputs, only_inputs, allow_unused)
159
160 if not torch._C._autograd_init():
~/anaconda2/envs/exbp/lib/python3.6/site-packages/excitationbp-0.1-py3.6.egg/excitationbp/functions/eb_convNd.py in backward(self, grad_output)
65 norm_factor, = _view3d(norm_factor)
66
---> 67 grad_output /= norm_factor + 1e-20 # normalize
68 ### stop EB-SPECIFIC CODE ###
69
~/anaconda2/envs/exbp/lib/python3.6/site-packages/torch/tensor.py in idiv(self, other)
348
349 def idiv(self, other):
--> 350 return self.div_(other)
351 itruediv = idiv
352
RuntimeError: inconsistent tensor size, expected r_ [1 x 8], t [1 x 8] and src [1 x 8 x 14 x 14] to have the same number of elements, but got 8, 8 and 1568 elements respectively at /opt/conda/conda-bld/pytorch_1518243271935/work/torch/lib/TH/generic/THTensorMath.c:1063
The text was updated successfully, but these errors were encountered: