-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathIterRange.hx
221 lines (197 loc) · 7.81 KB
/
IterRange.hx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
package finitudeiterable;
import haxe.macro.Expr;
import haxe.macro.Context;
using haxe.macro.ExprTools;
using haxe.macro.ComplexTypeTools;
/**
* Range iteratorS ( C's for(;;) loops style ).
* Can run backwards, using Ints and Floats, and can have steps.
*
* Example:
* ```haxe
* import IterRange.range as range;
* ...
* for (i in range(4, 10))
* trace(i); // 4, 5, 6, 7, 8, 9
*
* trace( range(0, 4).array() ); // [0,1,2,3]
* ```
*
*
* IterRange<T> and other range iterators are Iterable<T>
* ------------------------------------------------------
*
* So Mr. Bean can do things like:
*
* ```haxe
* import IterRange.rangeG as rangeG;
* using IterDup;
* using Lambda;
*
* trace( rangeG(10, -4.5, -5).array() ); // [10, 5, 0]
*
* for (x in rangeG(10, -4.5, 5).dup(2))
* trace(x); // [10, 10, 5, 5, 0, 0]
*
* rangeG(10, -4.5, 5).dup(2).iter( function(x) trace(x) );
* // [10, 10, 5, 5, 0, 0]
* // .iter() being in Lambda.hx
* ```
*
* Consistency
* -----------
*
* IterRange is consistent with Haxe range iterator (`...`) and most other languages
* in that it will never reach the end value, so:
*
* range(0, 5) will iterate 0, 1, 2, 3, 4 (but not 5)
* rangeG(9, 10.2, 0.5) will iterate 9, 9.5, 10 (but not 10.2 nor 10.5)
* rangeG(2, -2, 3 ) will iterate 2, -1 (but not -5)
* range(2, 2) will not iterate
* range(-2, -2) won't iterate either
*/
/**
* A collection of static methods, plus the general rangeG() iterator.
*
* [OPTIMIZATION NOTES]
* Please use range(), rangeDown(), rangeStep(), rangeStepDown() when possible.
* Keep rangeG() for those cases where Mr. Bean trully needs a general
* way of iterating.
*
* range() runs roughly as fast as the Haxe iterator.
* rangeG() has more overhead. because the next()/hasNext() can not be inlined
* in this case.
*
* (Initial goal was to write a generic, multi-usage range() function, using
* macros, that would choose the optimal method. Turns out it was possible
* (see the IterRangeMacro.rangeM() in the git history)
* but where variables were used instead of constants (e.g. range(0, to))
* the macro could not know whether it was modified or not, which led to
* it using the slower generic rangeG(). In order to simplify things and reduce
* surprises for the programmer IterRangeMacro was removed -
* Thu Mar 10 22:55:48 CST 2016)
*/
class IterRange<T:Float> {
/**
* Optimized range iterators.
*
* Eg: rangeDown(10, 0) and rangeUp(0, 10) have a step of 1 and are as fast as
* Haxe's ... IteratorInt.
*/
public inline static function range<T:Float>(a:T, b:T) return new IterRange.IRU(a, b);
public inline static function rangeDown<T:Float>(a:T, b:T) return new IterRange.IRD(a, b);
/**
* Optimized stepped range iterators.
*
* rangeStepDown(10, 0, 2) and rangeStep(0, 30, 3) have an arbitrary step
* (the sign is automatically calculated).
* They are slower than rangeDown() and range().
*
* Mr. Bean may also use rangeG() which is generic, but which is not as fast.
*/
public inline static function rangeStep<T:Float>(a:T, b:T, s:T) return new IterRange.IRSU(a, b, s);
public inline static function rangeStepDown<T:Float>(a:T, b:T, s:T) return new IterRange.IRSD(a, b, s);
/**
* Generic range. It can go upwards or downwards,
* can use an arbitrary step (which sign is automatically determined),
* can use Int or Float regardless,
* and a and b may be swapped.
*/
public inline static function rangeG<T:Float>(a:T, b:T, s:T=cast 1., reverseRange:Bool=false) return new IterRange(a, b, s, reverseRange);
// ---------- The rest of the class is just used by rangeG() -------------
var ab : T; ///< From
var ad : T; ///< To
var d : T; ///< Step
var n : T; ///< Next value to be returned (precomputed)
/**
* Note: Mr. Bean do not want to use this constructor directly.
* Instead he calls either range(), rangeDown(), rangeStep(),
* rangeStepDown() or rangeG().
*
* rangeG() is the same as new IterRange().
*
* @param (T from) The from value, this is always the first value iterated
* @param (T to) The to value. This is actually NEVER reached
* @param (T step) The step. Sign doesn't matter here
* @param (Bool reverseRange=false) Swap to and from (mostly useless)
*/
public function new(from:T, to:T, step:T=cast 1., reverseRange:Bool=false) {
ab = !reverseRange ? from : to - 1;
ad = !reverseRange ? to : from - 1;
d = step;
if (ab > ad && d > 0.) d = -d;
else if (ab < ad && d < 0.) d = -d;
n = ab;
}
public inline function hasNext() return ab <= ad ? n < ad : n > ad;
public inline function next() { var p = n; n += d; return p; }
/** Making it an iterable: Must return a new iterator,
* so as to enable loops (see IterLoop), otherwise it would just
* continue iterating.
*/
public inline function iterator():IterableIterator<T> return new IterRange<T>(ab, ad, d);
} // class IterRange
/**
* @note Use the range(), rangeDown(), rangeStep() etc instead of these.
*/
class IRU<T:(Float)> { // IterRangeUp, step 1
var ab : T; ///< From
var ad : T; ///< To
var n : T; ///< Next value to be returned (precomputed)
// need inline otherwise slower thann Haxe ... iterator
// (due to having to access object.var instead of inlined var directly)
// this costs a few bytes though, and as soon as we'd use it as an
// Iterable, the object would be created.
public inline function new(from:T, to:T) {
ab = from;
ad = to;
n = ab;
}
public inline function hasNext() return n < ad;
public inline function next() return n++;
public inline function iterator():IterableIterator<T> return new IRU(ab, ad);
}
class IRD<T:(Float)> { // IterRangeDown, step -1
var ab : T; ///< From
var ad : T; ///< To
var n : T; ///< Next value to be returned (precomputed)
public inline function new(from:T, to:T) {
ab = from;
ad = to;
n = ab;
}
public inline function hasNext() return n > ad;
public inline function next() return n--;
public inline function iterator():IterableIterator<T> return new IRD(ab, ad);
}
class IRSU<T:(Float)> { // IterRangeStepUp, step >0
var ab : T; ///< From
var ad : T; ///< To. Will be -= d so everythg is optim away.
var d : T; ///< Step
var n : T; ///< Next value to be returned (precomputed)
public inline function new(from:T, to:T, step:T) {
d = step;
ab = from;
ad = to - d;
n = ab - d;
}
public inline function hasNext() return n < ad;
public inline function next() return n += d;
public inline function iterator():IterableIterator<T> return new IRSU(ab, ad+d, d);
}
class IRSD<T:(Float)> { // IterRangeStepDown, step <0
var ab : T; ///< From
var ad : T; ///< To
var d : T; ///< Step. Must be negative.
var n : T; ///< Next value to be returned (precomputed)
public inline function new(from:T, to:T, step:T) {
d = step;
ab = from;
ad = to - d;
n = ab - d;
// trace('from:$from to:$to step:$step ab:$ab ad:$ad d:$d n:$n');
}
public inline function hasNext() return n > ad;
public inline function next() return n += d;
public inline function iterator():IterableIterator<T> return new IRSD(ab, ad+d, d);
}