-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy path36-DIPG_analysis.Rmd
99 lines (77 loc) · 2.62 KB
/
36-DIPG_analysis.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---
title: "DIPG: Analysis"
output:
html_notebook:
toc: true
toc_float: true
---
**J. Taroni 2018**
Analyze the DIPG `B` matrices from the MultiPLIER model
## Set up
```{r}
`%>%` <- dplyr::`%>%`
source(file.path("util", "test_LV_differences.R"))
```
Directories for this notebook
```{r}
# plot and result directory setup for this notebook
plot.dir <- file.path("plots", "36")
dir.create(plot.dir, recursive = TRUE, showWarnings = FALSE)
results.dir <- file.path("results", "36")
dir.create(results.dir, recursive = TRUE, showWarnings = FALSE)
```
## Read in files
#### GSE50021
```{r}
gse50021.b.file <- file.path("results", "35", "GSE50021_recount2_B.RDS")
gse50021.b <- readRDS(gse50021.b.file)
gse50021.meta.file <- file.path("data", "sample_info",
"GSE50021_cleaned_metadata.tsv")
gse50021.meta.df <- readr::read_tsv(gse50021.meta.file)
```
#### GSE26576
```{r}
gse26576.b.file <- file.path("results", "35", "E-GEOD-26576_recount2_B.RDS")
gse26576.b <- readRDS(gse26576.b.file)
gse26576.meta.file <- file.path("data", "sample_info",
"E-GEOD-26576_cleaned_metadata.tsv")
gse26576.meta.df <- readr::read_tsv(gse26576.meta.file)
```
### Metadata
We should explore the metadata a little bit, because these datasets are both
quite small.
So, we'll need to sort out what kinds of analyses are possible.
```{r}
gse50021.meta.df %>%
dplyr::group_by(tissue) %>%
dplyr::tally()
```
```{r}
gse26576.meta.df %>%
dplyr::group_by(disease_state) %>%
dplyr::tally()
```
`GSE26576` does not have enough normal samples for a DIPG-normal comparison and
the other groups in `GSE26576` are not present in `GSE50021`.
We can do a comparison of DIPG-normal in `GSE50021`.
## Differential expression in `GSE50021`
```{r}
gse50021.results <-
LVTestWrapper(b.matrix = gse50021.b,
sample.info.df = dplyr::mutate(gse50021.meta.df,
Sample = sample_accession),
phenotype.col = "tissue",
file.lead = "GSE50021_normal_dipg",
plot.dir = plot.dir,
results.dir = results.dir)
```
```{r}
gse50021.results$limma %>%
dplyr::filter(adj.P.Val < 0.05)
```
After revisiting [Buczkowicz, et al.](https://dx.doi.org/10.1038/ng.2936) and
the [`GSE50021`](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50021)
accession, there is no information about which _part_ of the brain the normal
brain came from or how it was obtained.
So, I am a bit concerned about drawing any conclusions from this analysis, as
the differences we see may not be attributable to disease state.