-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy path06-sle-wb_cell_type.Rmd
373 lines (304 loc) · 11.4 KB
/
06-sle-wb_cell_type.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
---
title: "SLE WB PLIER cell type analyses"
output:
html_notebook:
toc: true
toc_float: true
---
**J. Taroni 2018**
Part of the motivation behind using PLIER (particularly in a systemic lupus
erythematosus whole blood setting) is that we can automatically extract
information about cell type proportion variation.
One of the datasets included in the SLE WB compendium comes from
[Banchereau, et al.](https://doi.org/10.1016/j.cell.2016.03.008).
The original publication contained some interesting findings about neutrophils
and plasmablasts.
In this notebook, we explore whether latent variables from the PLIER model
trained on the SLE WB compendium associated with these cell type (gene sets)
show similar trends to what was found by Banchereau, et al.
By extension, this also tells us whether the cell type-specific patterns are
retained following all the processing we did in
[`greenelab/rheum-plier-data/sle-wb`](https://github.com/greenelab/rheum-plier-data/tree/4be547553f24fecac9e2f5c2b469a17f9df253f0/sle-wb).
## Functions and directory set up
```{r}
`%>%` <- dplyr::`%>%`
library(PLIER)
# custom functions
source(file.path("util", "plier_util.R"))
```
```{r}
# plot and result directory setup for this notebook
plot.dir <- file.path("plots", "06")
dir.create(plot.dir, recursive = TRUE, showWarnings = FALSE)
results.dir <- file.path("results", "06")
dir.create(results.dir, recursive = TRUE, showWarnings = FALSE)
```
## Load data
### PLIER model
```{r}
# SLE WB model trained in notebook 05
model.file <- file.path("results", "05", "SLE-WB_PLIER_model.RDS")
plier.results <- readRDS(model.file)
# summary data.frame (pathway to LV info like AUC, FDR)
sle.summary <- plier.results$summary
# LVs
b.matrix <- plier.results$B
```
### Banchereau, et al. Sample Data Relationship File
```{r}
# phenotype information
# read in sample data relationship file
file.65391 <- file.path("data", "sample_info", "E-GEOD-65391.sdrf.txt")
e.65391.sdrf <- readr::read_tsv(file.65391)
# use Sample instead of Source Name
colnames(e.65391.sdrf)[1] <- c("Sample")
# get rid of trailing " 1" so they match the sample names from B matrix
e.65391.sdrf$Sample <- gsub(" 1", "", e.65391.sdrf$Sample)
```
## Neutrophil signature
### LVs associated with neutrophil gene sets
```{r}
sle.summary %>%
dplyr::filter(grepl("Neutrophil", pathway),
FDR < 0.05)
```
Based on these results, we select `LV2`,`LV27`, `LV34`, and `LV87`
for further exploration.
If these latent variables are also strongly associated with _other_ pathways or
cell types, that is not desirable.
That could make intepretation more difficult.
```{r}
sle.summary %>%
dplyr::filter(`LV index` %in% c(2, 27, 34, 87)) %>%
dplyr::filter(FDR < 0.05) %>%
dplyr::arrange(`LV index`, desc(AUC))
```
Some notes on these results:
* `LV2` looks like it captures the myeloid lineage in a broad sense, as a
monocyte gene set, `SVM Monocytes`, and a neutrophil progenitor gene set,
`DMAP_GRAN2` (reported to be a neutrophilic metamyelocyte signature in
the [DMAP paper](https://doi.org/10.1016/j.cell.2011.01.004)).
* `LV27` and `LV34` also look like they may capture some information about
monocytes because of their association with the `DMAP_MONO2` gene set.
* `LV87` looks the most "neutrophil-specific" and therefore, the most desirable
for this kind of analysis.
#### U matrix
```{r}
PLIER::plotU(plierRes = plier.results,
pval.cutoff = 1e-06,
indexCol = c(2, 27, 34, 87),
top = 10)
```
```{r}
png(file.path(plot.dir, "SLE_WB_neutrophil_Uplot.png"),
res = 300, width = 7, height = 7, units = "in")
PLIER::plotU(plierRes = plier.results,
pval.cutoff = 1e-06,
indexCol = c(2, 27, 34, 87),
top = 10)
dev.off()
```
### Compare to neutrophil count from Banchereau, et al.
```{r}
neutrophil.count.df <- e.65391.sdrf[, c("Sample",
"Characteristics [neutrophil_count]")]
colnames(neutrophil.count.df)[2] <- c("Neutrophil.Count")
neutrophil.count.df <-
neutrophil.count.df %>%
dplyr::filter(Neutrophil.Count != "Data Not Available") %>%
dplyr::filter(Neutrophil.Count != "Not Applicable")
```
```{r}
# combine with neutrophil latent variables
neutro.lv.df <- as.data.frame(cbind(colnames(b.matrix),
t(b.matrix[c(2, 27, 34, 87), ])))
colnames(neutro.lv.df) <- c("Sample", "LV2", "LV27", "LV34", "LV87")
neutro.df <- dplyr::inner_join(neutro.lv.df, neutrophil.count.df,
by = "Sample") %>%
dplyr::mutate(LV2 = as.numeric(as.character(LV2)),
LV27 = as.numeric(as.character(LV27)),
LV34 = as.numeric(as.character(LV34)),
LV87 = as.numeric(as.character(LV87)),
Neutrophil.Count = as.numeric(as.character(Neutrophil.Count)))
neutro.df
```
```{r}
# write to file, will use to compare to results with recount2
count.file <- file.path(results.dir,
"Banchereau_count_SLE_model_neutrophil_LV.tsv")
readr::write_tsv(neutro.df, path = count.file)
```
```{r}
# function for scatter plots, given lv (a string indicating the LV of interest)
# make a scatter plot where the LV is the x variable, neutrophil count is the
# y variable & fit a line with geom_smooth(method = "lm")
# also will annotate the plot with the supplied r-squared value (rsq arg)
# where the text is placed is automatically chosen from the x and y values
# needs to be used in this global environment
LVScatter <- function(lv, rsq) {
y.var <- "Neutrophil.Count"
# calculate where to put the r-squared value
x.range <- max(neutro.df[, lv]) - min(neutro.df[, lv])
x.coord <- min(neutro.df[, lv]) + (x.range * 0.15)
y.range <- max(neutro.df[, y.var]) - min(neutro.df[, y.var])
y.coord <- max(neutro.df[, y.var]) - (y.range * 0.15)
ggplot2::ggplot(neutro.df, ggplot2::aes_string(x = lv, y = y.var)) +
ggplot2::geom_point(alpha = 0.7) +
ggplot2::geom_smooth(method = "lm") +
ggplot2::theme_bw() +
ggplot2::labs(y = "Neutrophil Count") +
ggplot2::theme(legend.position = "none",
text = ggplot2::element_text(size = 15)) +
ggplot2::annotate("text", x = x.coord, y = y.coord,
label = paste("r-squared =", rsq))
}
```
#### LV2
```{r}
summary(lm(neutro.df$Neutrophil.Count ~ neutro.df$LV2))
```
```{r}
LVScatter(lv = "LV2", rsq = 0.12)
```
#### LV27
```{r}
summary(lm(neutro.df$Neutrophil.Count ~ neutro.df$LV27))
```
```{r}
LVScatter(lv = "LV27", rsq = 0.38)
```
#### LV34
```{r}
summary(lm(neutro.df$Neutrophil.Count ~ neutro.df$LV34))
```
```{r}
LVScatter(lv = "LV34", rsq = 0.29)
```
#### LV87
```{r}
summary(lm(neutro.df$Neutrophil.Count ~ neutro.df$LV87))
```
```{r}
LVScatter(lv = "LV87", rsq = 0.29)
```
When comparing the results to the recount2 model, we'll pursue `LV27` because
it's the best performing and `LV87` because of its lack of overlap with
monocyte signatures.
So, we'll save the plots for these two LVs.
```{r}
plot.file <- file.path(plot.dir, "Banchereau_neutrophil_count_LV27_scatter.png")
ggplot2::ggsave(plot.file, plot = LVScatter("LV27", rsq = 0.38))
plot.file <- file.path(plot.dir, "Banchereau_neutrophil_count_LV87_scatter.png")
ggplot2::ggsave(plot.file, plot = LVScatter("LV87", rsq = 0.29))
```
## Plasma cell signature
In Banchereau, et al., the authors demonstrated that plasmablast counts were
different between patients stratified by 3 disease activity (DA) groups.
While there were no _plasmablast_ gene sets given to PLIER during training, we
did use _plasma cell_ gene sets (isolated from PBMCs)
(A plasmablast is a plasma cell precursor that is typically found in a
germinal center.)
### LVs associated with plasma cell gene sets
What LVs, if any, are significantly associated with the plasma cell gene sets?
```{r}
sle.summary %>%
dplyr::filter(grepl("Plasma", pathway),
FDR < 0.05)
```
```{r}
sle.summary %>%
dplyr::filter(`LV index` %in% c(52, 136),
FDR < 0.05) %>%
dplyr::arrange(desc(AUC))
```
#### U matrix
```{r}
PLIER::plotU(plierRes = plier.results,
pval.cutoff = 1e-06,
indexCol = c(52, 136),
top = 10)
```
```{r}
png(file.path(plot.dir, "SLE_WB_plasma_cell_Uplot.png"),
res = 300, width = 7, height = 7, units = "in")
PLIER::plotU(plierRes = plier.results,
pval.cutoff = 1e-06,
indexCol = c(52, 136),
top = 10)
dev.off()
```
### Banchereau, et al. disease activity groups
Disease activity was defined based on SLEDAI (SLE Disease Activity Index,
[Bombardier, et al. 1992.](https://www.ncbi.nlm.nih.gov/pubmed/1599520)).
[Banchereau, et al.](https://doi.org/10.1016/j.cell.2016.03.008)
defined the disease activity groups as follows:
> Samples were categorized as DA1 (SLEDAI: 0–2), DA2 (SLEDAI: 3–7), or DA3
(SLEDAI > 7), based on SLEDAI distribution across the cohort.
```{r}
# get DA information from the sample-data relationship file
da.group.df <- e.65391.sdrf[, c("Sample", "Characteristics [disease_activity]")]
colnames(da.group.df)[2] <- "Disease.Activity"
da.group.df <- da.group.df %>%
dplyr::filter(Disease.Activity != "Not Applicable")
# plasma cell LV
plasma.lv.df <- as.data.frame(cbind(colnames(b.matrix),
t(b.matrix[c(52, 136), ])))
colnames(plasma.lv.df) <- c("Sample", "LV52", "LV136")
# join
plasma.df <- dplyr::inner_join(plasma.lv.df, da.group.df) %>%
dplyr::mutate(Disease.Activity = dplyr::recode(Disease.Activity,
`1` = "DA1",
`2` = "DA2",
`3` = "DA3"),
Disease.Activity = factor(Disease.Activity),
LV52 = as.numeric(as.character(LV52)),
LV136 = as.numeric(as.character(LV136)))
head(plasma.df)
```
```{r}
# write to file, will be used to compare to recount2 model
plasma.file <- file.path(results.dir,
"Banchereau_DA_group_SLE_model_plasma_cell_LVs.tsv")
readr::write_tsv(plasma.df, path = plasma.file)
```
#### Plotting
```{r}
plasma.df %>%
ggplot2::ggplot(ggplot2::aes(x = Disease.Activity,
y = LV52)) +
ggplot2::geom_boxplot(notch = TRUE) +
ggplot2::theme_bw() +
ggplot2::labs(x = "Disease Activity") +
ggplot2::theme(text = ggplot2::element_text(size = 15))
```
```{r}
plot.file <- file.path(plot.dir, "Banchereau_DA_group_LV52_boxplot.png")
ggplot2::ggsave(filename = plot.file, plot = ggplot2::last_plot())
```
```{r}
# check for statistical significance
# (pairwise t-test is consistent with original publication as far as I can tell)
pairwise.t.test(x = plasma.df$LV52,
g = plasma.df$Disease.Activity,
p.adjust.method = "bonferroni")
```
```{r}
plasma.df %>%
ggplot2::ggplot(ggplot2::aes(x = Disease.Activity,
y = LV136)) +
ggplot2::geom_boxplot(notch = TRUE) +
ggplot2::theme_bw() +
ggplot2::labs(x = "Disease Activity") +
ggplot2::theme(text = ggplot2::element_text(size = 15))
```
```{r}
plot.file <- file.path(plot.dir, "Banchereau_DA_group_LV136_boxplot.png")
ggplot2::ggsave(filename = plot.file, plot = ggplot2::last_plot())
```
```{r}
# check for statistical significance
# (pairwise t-test is consistent with original publication as far as I can tell)
pairwise.t.test(x = plasma.df$LV136,
g = plasma.df$Disease.Activity,
p.adjust.method = "bonferroni")
```