-
Notifications
You must be signed in to change notification settings - Fork 90
/
Copy pathstepper.c
1148 lines (987 loc) · 56.7 KB
/
stepper.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
stepper.c - stepper motor driver: executes motion plans using stepper motors
Part of grblHAL
Copyright (c) 2016-2024 Terje Io
Copyright (c) 2011-2016 Sungeun K. Jeon for Gnea Research LLC
Copyright (c) 2009-2011 Simen Svale Skogsrud
grblHAL is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
grblHAL is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with grblHAL. If not, see <http://www.gnu.org/licenses/>.
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "hal.h"
#include "protocol.h"
#include "state_machine.h"
//#define MINIMIZE_PROBE_OVERSHOOT
//#include "debug.h"
//! \cond
// Some useful constants.
#define DT_SEGMENT (1.0f / (ACCELERATION_TICKS_PER_SECOND * 60.0f)) // min/segment
#define REQ_MM_INCREMENT_SCALAR 1.25f
typedef enum {
Ramp_Accel,
Ramp_Cruise,
Ramp_Decel,
Ramp_DecelOverride
} ramp_type_t;
typedef union {
uint8_t flags;
struct {
uint8_t velocity_profile :1,
hold_partial_block :1,
parking :1,
decel_override :1,
unassigned :4;
};
} prep_flags_t;
// Holds the planner block Bresenham algorithm execution data for the segments in the segment
// buffer. Normally, this buffer is partially in-use, but, for the worst case scenario, it will
// never exceed the number of accessible stepper buffer segments (SEGMENT_BUFFER_SIZE-1).
// NOTE: This data is copied from the prepped planner blocks so that the planner blocks may be
// discarded when entirely consumed and completed by the segment buffer. Also, AMASS alters this
// data for its own use.
static st_block_t st_block_buffer[SEGMENT_BUFFER_SIZE - 1];
// Primary stepper segment ring buffer. Contains small, short line segments for the stepper
// algorithm to execute, which are "checked-out" incrementally from the first block in the
// planner buffer. Once "checked-out", the steps in the segments buffer cannot be modified by
// the planner, where the remaining planner block steps still can.
static segment_t segment_buffer[SEGMENT_BUFFER_SIZE];
// Stepper ISR data struct. Contains the running data for the main stepper ISR.
static stepper_t st;
#ifdef ADAPTIVE_MULTI_AXIS_STEP_SMOOTHING
typedef struct {
uint32_t level_1;
uint32_t level_2;
uint32_t level_3;
} amass_t;
static amass_t amass;
#endif
// Used for blocking new segments being added to the seqment buffer until deceleration starts
// after probe signal has been asserted.
static volatile bool probe_asserted = false;
// Stepper timer ticks per minute
static float cycles_per_min;
// Step segment ring buffer pointers
static volatile segment_t *segment_buffer_tail;
static segment_t *segment_buffer_head, *segment_next_head;
// Pointers for the step segment being prepped from the planner buffer. Accessed only by the
// main program. Pointers may be planning segments or planner blocks ahead of what being executed.
static plan_block_t *pl_block; // Pointer to the planner block being prepped
static st_block_t *st_prep_block; // Pointer to the stepper block data being prepped
static st_block_t st_hold_block; // Copy of stepper block data for block put on hold during parking
// Segment preparation data struct. Contains all the necessary information to compute new segments
// based on the current executing planner block.
typedef struct {
prep_flags_t recalculate;
float dt_remainder;
uint32_t steps_remaining;
float steps_per_mm;
float req_mm_increment;
st_block_t *last_st_block;
uint32_t last_steps_remaining;
float last_steps_per_mm;
float last_dt_remainder;
ramp_type_t ramp_type; // Current segment ramp state
float mm_complete; // End of velocity profile from end of current planner block in (mm).
// NOTE: This value must coincide with a step(no mantissa) when converted.
float current_speed; // Current speed at the end of the segment buffer (mm/min)
float maximum_speed; // Maximum speed of executing block. Not always nominal speed. (mm/min)
float exit_speed; // Exit speed of executing block (mm/min)
#ifdef KINEMATICS_API
float rate_multiplier; // Rate multiplier of executing block.
#endif
float accelerate_until; // Acceleration ramp end measured from end of block (mm)
float decelerate_after; // Deceleration ramp start measured from end of block (mm)
float target_position; //
float target_feed; //
float inv_feedrate; // Used by PWM laser mode to speed up segment calculations.
float current_spindle_rpm;
} st_prep_t;
//! \endcond
static st_prep_t prep;
extern void gc_output_message (char *message);
/* BLOCK VELOCITY PROFILE DEFINITION
__________________________
/| |\ _________________ ^
/ | | \ /| |\ |
/ | | \ / | | \ s
/ | | | | | \ p
/ | | | | | \ e
+-----+------------------------+---+--+---------------+----+ e
| BLOCK 1 ^ BLOCK 2 | d
|
time -----> EXAMPLE: Block 2 entry speed is at max junction velocity
The planner block buffer is planned assuming constant acceleration velocity profiles and are
continuously joined at block junctions as shown above. However, the planner only actively computes
the block entry speeds for an optimal velocity plan, but does not compute the block internal
velocity profiles. These velocity profiles are computed ad-hoc as they are executed by the
stepper algorithm and consists of only 7 possible types of profiles: cruise-only, cruise-
deceleration, acceleration-cruise, acceleration-only, deceleration-only, full-trapezoid, and
triangle(no cruise).
maximum_speed (< nominal_speed) -> +
+--------+ <- maximum_speed (= nominal_speed) /|\
/ \ / | \
current_speed -> + \ / | + <- exit_speed
| + <- exit_speed / | |
+-------------+ current_speed -> +----+--+
time --> ^ ^ ^ ^
| | | |
decelerate_after(in mm) decelerate_after(in mm)
^ ^ ^ ^
| | | |
accelerate_until(in mm) accelerate_until(in mm)
The step segment buffer computes the executing block velocity profile and tracks the critical
parameters for the stepper algorithm to accurately trace the profile. These critical parameters
are shown and defined in the above illustration.
*/
//
// Callback from delay to deenergize steppers after movement, might been cancelled
void st_deenergize (void *data)
{
if(sys.steppers_deenergize) {
hal.stepper.enable(settings.steppers.energize, true);
sys.steppers_deenergize = false;
}
}
// Stepper state initialization. Cycle should only start if the st.cycle_start flag is
// enabled. Startup init and limits call this function but shouldn't start the cycle.
void st_wake_up (void)
{
// Initialize stepper data to ensure first ISR call does not step and
// cancel any pending steppers deenergize
//st.exec_block = NULL;
sys.steppers_deenergize = false;
hal.stepper.wake_up();
}
// Stepper shutdown
ISR_CODE void ISR_FUNC(st_go_idle)(void)
{
// Disable Stepper Driver Interrupt. Allow Stepper Port Reset Interrupt to finish, if active.
sys_state_t state = state_get();
hal.stepper.go_idle(false);
// Set stepper driver idle state, disabled or enabled, depending on settings and circumstances.
if(((settings.steppers.idle_lock_time != 255) || sys.rt_exec_alarm || state == STATE_SLEEP) && state != STATE_HOMING) {
if(settings.steppers.idle_lock_time == 0 || state == STATE_SLEEP)
hal.stepper.enable((axes_signals_t){0}, true);
else {
// Force stepper dwell to lock axes for a defined amount of time to ensure the axes come to a complete
// stop and not drift from residual inertial forces at the end of the last movement.
task_delete(st_deenergize, NULL); // Cancel any pending steppers deenergize task
sys.steppers_deenergize = task_add_delayed(st_deenergize, NULL, settings.steppers.idle_lock_time);
}
} else
hal.stepper.enable(settings.steppers.idle_lock_time == 255 ? (axes_signals_t){AXES_BITMASK} : settings.steppers.energize, true);
}
/* "The Stepper Driver Interrupt" - This timer interrupt is the workhorse of grblHAL. grblHAL employs
the venerable Bresenham line algorithm to manage and exactly synchronize multi-axis moves.
Unlike the popular DDA algorithm, the Bresenham algorithm is not susceptible to numerical
round-off errors and only requires fast integer counters, meaning low computational overhead
and maximizing the microcontrollers capabilities. However, the downside of the Bresenham algorithm
is, for certain multi-axis motions, the non-dominant axes may suffer from un-smooth step
pulse trains, or aliasing, which can lead to strange audible noises or shaking. This is
particularly noticeable or may cause motion issues at low step frequencies (0-5kHz), but
is usually not a physical problem at higher frequencies, although audible.
To improve Bresenham multi-axis performance, grblHAL uses what we call an Adaptive Multi-Axis
Step Smoothing (AMASS) algorithm, which does what the name implies. At lower step frequencies,
AMASS artificially increases the Bresenham resolution without effecting the algorithm's
innate exactness. AMASS adapts its resolution levels automatically depending on the step
frequency to be executed, meaning that for even lower step frequencies the step smoothing
level increases. Algorithmically, AMASS is achieved by a simple bit-shifting of the Bresenham
step count for each AMASS level. For example, for a Level 1 step smoothing, we bit shift
the Bresenham step event count, effectively multiplying it by 2, while the axis step counts
remain the same, and then double the stepper ISR frequency. In effect, we are allowing the
non-dominant Bresenham axes step in the intermediate ISR tick, while the dominant axis is
stepping every two ISR ticks, rather than every ISR tick in the traditional sense. At AMASS
Level 2, we simply bit-shift again, so the non-dominant Bresenham axes can step within any
of the four ISR ticks, the dominant axis steps every four ISR ticks, and quadruple the
stepper ISR frequency. And so on. This, in effect, virtually eliminates multi-axis aliasing
issues with the Bresenham algorithm and does not significantly alter grblHAL's performance, but
in fact, more efficiently utilizes unused CPU cycles overall throughout all configurations.
AMASS retains the Bresenham algorithm exactness by requiring that it always executes a full
Bresenham step, regardless of AMASS Level. Meaning that for an AMASS Level 2, all four
intermediate steps must be completed such that baseline Bresenham (Level 0) count is always
retained. Similarly, AMASS Level 3 means all eight intermediate steps must be executed.
Although the AMASS Levels are in reality arbitrary, where the baseline Bresenham counts can
be multiplied by any integer value, multiplication by powers of two are simply used to ease
CPU overhead with bitshift integer operations.
This interrupt is simple and dumb by design. All the computational heavy-lifting, as in
determining accelerations, is performed elsewhere. This interrupt pops pre-computed segments,
defined as constant velocity over n number of steps, from the step segment buffer and then
executes them by pulsing the stepper pins appropriately via the Bresenham algorithm. This
ISR is supported by The Stepper Port Reset Interrupt which it uses to reset the stepper port
after each pulse. The bresenham line tracer algorithm controls all stepper outputs
simultaneously with these two interrupts.
NOTE: This interrupt must be as efficient as possible and complete before the next ISR tick.
NOTE: This ISR expects at least one step to be executed per segment.
*/
//! \cond
ISR_CODE void ISR_FUNC(stepper_driver_interrupt_handler)(void)
{
#if ENABLE_BACKLASH_COMPENSATION
static bool backlash_motion;
#endif
// Start a step pulse when there is a block to execute.
if(st.exec_block) {
hal.stepper.pulse_start(&st);
st.new_block = st.dir_change = false;
if (st.step_count == 0) // Segment is complete. Discard current segment.
st.exec_segment = NULL;
}
// If there is no step segment, attempt to pop one from the stepper buffer
if (st.exec_segment == NULL) {
// Anything in the buffer? If so, load and initialize next step segment.
if (segment_buffer_tail != segment_buffer_head) {
// Initialize new step segment and load number of steps to execute
st.exec_segment = (segment_t *)segment_buffer_tail;
// Initialize step segment timing per step and load number of steps to execute.
hal.stepper.cycles_per_tick(st.exec_segment->cycles_per_tick);
st.step_count = st.exec_segment->n_step; // NOTE: Can sometimes be zero when moving slow.
// If the new segment starts a new planner block, initialize stepper variables and counters.
if (st.exec_block != st.exec_segment->exec_block) {
if((st.dir_change = st.exec_block == NULL || st.dir_outbits.value != st.exec_segment->exec_block->direction_bits.value))
st.dir_outbits = st.exec_segment->exec_block->direction_bits;
if(st.exec_block != NULL && st.exec_block->offset_id != st.exec_segment->exec_block->offset_id)
sys.report.wco = sys.report.force_wco = On; // Do not generate grbl.on_rt_reports_added event!
st.exec_block = st.exec_segment->exec_block;
st.step_event_count = st.exec_block->step_event_count;
st.new_block = true;
#if ENABLE_BACKLASH_COMPENSATION
backlash_motion = st.exec_block->backlash_motion;
#endif
if(st.exec_block->overrides.sync)
sys.override.control = st.exec_block->overrides;
// Execute output commands to be synchronized with motion
while(st.exec_block->output_commands) {
output_command_t *cmd = st.exec_block->output_commands;
cmd->is_executed = true;
if(cmd->is_digital)
hal.port.digital_out(cmd->port, cmd->value != 0.0f);
else
hal.port.analog_out(cmd->port, cmd->value);
st.exec_block->output_commands = cmd->next;
}
// Enqueue any message to be printed (by foreground process)
if(st.exec_block->message) {
if(!protocol_enqueue_foreground_task((foreground_task_ptr)gc_output_message, st.exec_block->message))
free(st.exec_block->message);
st.exec_block->message = NULL;
}
// Initialize Bresenham line and distance counters
st.counter_x = st.counter_y = st.counter_z
#ifdef A_AXIS
= st.counter_a
#endif
#ifdef B_AXIS
= st.counter_b
#endif
#ifdef C_AXIS
= st.counter_c
#endif
#ifdef U_AXIS
= st.counter_u
#endif
#ifdef V_AXIS
= st.counter_v
#endif
= st.step_event_count >> 1;
#ifndef ADAPTIVE_MULTI_AXIS_STEP_SMOOTHING
memcpy(st.steps, st.exec_block->steps, sizeof(st.steps));
#endif
}
#ifdef ADAPTIVE_MULTI_AXIS_STEP_SMOOTHING
// With AMASS enabled, adjust Bresenham axis increment counters according to AMASS level.
st.amass_level = st.exec_segment->amass_level;
st.steps[X_AXIS] = st.exec_block->steps[X_AXIS] >> st.amass_level;
st.steps[Y_AXIS] = st.exec_block->steps[Y_AXIS] >> st.amass_level;
st.steps[Z_AXIS] = st.exec_block->steps[Z_AXIS] >> st.amass_level;
#ifdef A_AXIS
st.steps[A_AXIS] = st.exec_block->steps[A_AXIS] >> st.amass_level;
#endif
#ifdef B_AXIS
st.steps[B_AXIS] = st.exec_block->steps[B_AXIS] >> st.amass_level;
#endif
#ifdef C_AXIS
st.steps[C_AXIS] = st.exec_block->steps[C_AXIS] >> st.amass_level;
#endif
#ifdef U_AXIS
st.steps[U_AXIS] = st.exec_block->steps[U_AXIS] >> st.amass_level;
#endif
#ifdef V_AXIS
st.steps[V_AXIS] = st.exec_block->steps[V_AXIS] >> st.amass_level;
#endif
#endif
if(st.exec_segment->update_pwm)
st.exec_segment->update_pwm(st.exec_block->spindle, st.exec_segment->spindle_pwm);
else if(st.exec_segment->update_rpm)
st.exec_segment->update_rpm(st.exec_block->spindle, st.exec_segment->spindle_rpm);
} else {
// Segment buffer empty. Shutdown.
st_go_idle();
// Ensure pwm is set properly upon completion of rate-controlled motion.
if(st.exec_block->dynamic_rpm && st.exec_block->spindle->cap.laser) {
prep.current_spindle_rpm = 0.0f;
st.exec_block->spindle->update_pwm(st.exec_block->spindle, st.exec_block->spindle->pwm_off_value);
}
st.exec_block = NULL;
system_set_exec_state_flag(EXEC_CYCLE_COMPLETE); // Flag main program for cycle complete
return; // Nothing to do but exit.
}
}
// Check probing state.
// Monitors probe pin state and records the system position when detected.
// NOTE: This function must be extremely efficient as to not bog down the stepper ISR.
if (sys.probing_state == Probing_Active && hal.probe.get_state().triggered) {
sys.probing_state = Probing_Off;
memcpy(sys.probe_position, sys.position, sizeof(sys.position));
bit_true(sys.rt_exec_state, EXEC_MOTION_CANCEL);
#ifdef MINIMIZE_PROBE_OVERSHOOT
// "Flush" segment buffer if full in order to start deceleration early.
if((probe_asserted = segment_buffer_head->next == segment_buffer_tail)) {
segment_buffer_head = segment_buffer_tail->next;
if(st.step_count < 3 || st.step_count < (st.exec_segment->n_step >> 3))
segment_buffer_head = segment_buffer_head->next;
segment_next_head = segment_next_head->next;
}
#endif
}
register axes_signals_t step_outbits = (axes_signals_t){0};
// Execute step displacement profile by Bresenham line algorithm
st.counter_x += st.steps[X_AXIS];
if (st.counter_x > st.step_event_count) {
step_outbits.x = On;
st.counter_x -= st.step_event_count;
#if ENABLE_BACKLASH_COMPENSATION
if(!backlash_motion)
#endif
sys.position[X_AXIS] = sys.position[X_AXIS] + (st.dir_outbits.x ? -1 : 1);
}
st.counter_y += st.steps[Y_AXIS];
if (st.counter_y > st.step_event_count) {
step_outbits.y = On;
st.counter_y -= st.step_event_count;
#if ENABLE_BACKLASH_COMPENSATION
if(!backlash_motion)
#endif
sys.position[Y_AXIS] = sys.position[Y_AXIS] + (st.dir_outbits.y ? -1 : 1);
}
st.counter_z += st.steps[Z_AXIS];
if (st.counter_z > st.step_event_count) {
step_outbits.z = On;
st.counter_z -= st.step_event_count;
#if ENABLE_BACKLASH_COMPENSATION
if(!backlash_motion)
#endif
sys.position[Z_AXIS] = sys.position[Z_AXIS] + (st.dir_outbits.z ? -1 : 1);
}
#ifdef A_AXIS
st.counter_a += st.steps[A_AXIS];
if (st.counter_a > st.step_event_count) {
step_outbits.a = On;
st.counter_a -= st.step_event_count;
#if ENABLE_BACKLASH_COMPENSATION
if(!backlash_motion)
#endif
sys.position[A_AXIS] = sys.position[A_AXIS] + (st.dir_outbits.a ? -1 : 1);
}
#endif
#ifdef B_AXIS
st.counter_b += st.steps[B_AXIS];
if (st.counter_b > st.step_event_count) {
step_outbits.b = On;
st.counter_b -= st.step_event_count;
#if ENABLE_BACKLASH_COMPENSATION
if(!backlash_motion)
#endif
sys.position[B_AXIS] = sys.position[B_AXIS] + (st.dir_outbits.b ? -1 : 1);
}
#endif
#ifdef C_AXIS
st.counter_c += st.steps[C_AXIS];
if (st.counter_c > st.step_event_count) {
step_outbits.c = On;
st.counter_c -= st.step_event_count;
#if ENABLE_BACKLASH_COMPENSATION
if(!backlash_motion)
#endif
sys.position[C_AXIS] = sys.position[C_AXIS] + (st.dir_outbits.c ? -1 : 1);
}
#endif
#ifdef U_AXIS
st.counter_u += st.steps[U_AXIS];
if (st.counter_u > st.step_event_count) {
step_outbits.u = On;
st.counter_u -= st.step_event_count;
#if ENABLE_BACKLASH_COMPENSATION
if(!backlash_motion)
#endif
sys.position[U_AXIS] = sys.position[U_AXIS] + (st.dir_outbits.u ? -1 : 1);
}
#endif
#ifdef V_AXIS
st.counter_v += st.steps[V_AXIS];
if (st.counter_v > st.step_event_count) {
step_outbits.v = On;
st.counter_v -= st.step_event_count;
#if ENABLE_BACKLASH_COMPENSATION
if(!backlash_motion)
#endif
sys.position[V_AXIS] = sys.position[V_AXIS] + (st.dir_outbits.v ? -1 : 1);
}
#endif
st.step_outbits.value = step_outbits.value;
// During a homing cycle, lock out and prevent desired axes from moving.
if (state_get() == STATE_HOMING)
st.step_outbits.value &= sys.homing_axis_lock.mask;
if (st.step_count == 0 || --st.step_count == 0) {
// Segment is complete. Advance segment tail pointer.
segment_buffer_tail = segment_buffer_tail->next;
}
}
//! \endcond
// Reset and clear stepper subsystem variables
void st_reset (void)
{
if(hal.probe.configure)
hal.probe.configure(false, false);
// Initialize stepper driver idle state, clear step and direction port pins.
st_go_idle();
// hal.stepper.go_idle(true);
// NOTE: buffer indices starts from 1 for simpler driver coding!
// Set up stepper block ringbuffer as circular linked list and add id
uint_fast8_t idx, idx_max = (sizeof(st_block_buffer) / sizeof(st_block_t)) - 1;
for(idx = 0 ; idx <= idx_max ; idx++) {
st_block_buffer[idx].next = &st_block_buffer[idx == idx_max ? 0 : idx + 1];
st_block_buffer[idx].id = idx + 1;
}
// Set up segments ringbuffer as circular linked list, add id and clear AMASS level
idx_max = (sizeof(segment_buffer) / sizeof(segment_t)) - 1;
for(idx = 0 ; idx <= idx_max ; idx++) {
segment_buffer[idx].next = &segment_buffer[idx == idx_max ? 0 : idx + 1];
segment_buffer[idx].id = idx + 1;
segment_buffer[idx].amass_level = 0;
}
st_prep_block = &st_block_buffer[0];
// Initialize stepper algorithm variables.
pl_block = NULL; // Planner block pointer used by segment buffer
segment_buffer_tail = segment_buffer_head = &segment_buffer[0]; // empty = tail
segment_next_head = segment_buffer_head->next;
memset(&prep, 0, sizeof(st_prep_t));
memset(&st, 0, sizeof(stepper_t));
#ifdef ADAPTIVE_MULTI_AXIS_STEP_SMOOTHING
// TODO: move to driver?
// AMASS_LEVEL0: Normal operation. No AMASS. No upper cutoff frequency. Starts at LEVEL1 cutoff frequency.
// Defined as step timer frequency / Cutoff frequency in Hz
amass.level_1 = hal.f_step_timer / 8000;
amass.level_2 = hal.f_step_timer / 4000;
amass.level_3 = hal.f_step_timer / 2000;
#endif
cycles_per_min = (float)hal.f_step_timer * 60.0f;
}
// Called by spindle_set_state() to inform about RPM changes.
// Used by st_prep_buffer() to determine if spindle needs update when dynamic RPM is called for.
void st_rpm_changed (float rpm)
{
prep.current_spindle_rpm = rpm;
}
// Called by planner_recalculate() when the executing block is updated by the new plan.
void st_update_plan_block_parameters (void)
{
if (pl_block != NULL) { // Ignore if at start of a new block.
prep.recalculate.velocity_profile = On;
pl_block->entry_speed_sqr = prep.current_speed * prep.current_speed; // Update entry speed.
pl_block = NULL; // Flag st_prep_segment() to load and check active velocity profile.
}
}
// Changes the run state of the step segment buffer to execute the special parking motion.
void st_parking_setup_buffer (void)
{
// Store step execution data of partially completed block, if necessary.
if (prep.recalculate.hold_partial_block && !prep.recalculate.parking) {
prep.last_st_block = st_prep_block;
memcpy(&st_hold_block, st_prep_block, sizeof(st_block_t));
prep.last_steps_remaining = prep.steps_remaining;
prep.last_dt_remainder = prep.dt_remainder;
prep.last_steps_per_mm = prep.steps_per_mm;
}
// Set flags to execute a parking motion
prep.recalculate.parking = On;
prep.recalculate.velocity_profile = Off;
pl_block = NULL; // Always reset parking motion to reload new block.
}
// Restores the step segment buffer to the normal run state after a parking motion.
void st_parking_restore_buffer (void)
{
// Restore step execution data and flags of partially completed block, if necessary.
if (prep.recalculate.hold_partial_block) {
memcpy(prep.last_st_block, &st_hold_block, sizeof(st_block_t));
st_prep_block = prep.last_st_block;
prep.steps_remaining = prep.last_steps_remaining;
prep.dt_remainder = prep.last_dt_remainder;
prep.steps_per_mm = prep.last_steps_per_mm;
prep.recalculate.flags = 0;
prep.recalculate.hold_partial_block = prep.recalculate.velocity_profile = On;
prep.req_mm_increment = REQ_MM_INCREMENT_SCALAR / prep.steps_per_mm; // Recompute this value.
} else
prep.recalculate.flags = 0;
pl_block = NULL; // Set to reload next block.
}
/* Prepares step segment buffer. Continuously called from main program.
The segment buffer is an intermediary buffer interface between the execution of steps
by the stepper algorithm and the velocity profiles generated by the planner. The stepper
algorithm only executes steps within the segment buffer and is filled by the main program
when steps are "checked-out" from the first block in the planner buffer. This keeps the
step execution and planning optimization processes atomic and protected from each other.
The number of steps "checked-out" from the planner buffer and the number of segments in
the segment buffer is sized and computed such that no operation in the main program takes
longer than the time it takes the stepper algorithm to empty it before refilling it.
Currently, the segment buffer conservatively holds roughly up to 40-50 msec of steps.
NOTE: Computation units are in steps, millimeters, and minutes.
*/
void st_prep_buffer (void)
{
// Block step prep buffer, while in a suspend state and there is no suspend motion to execute.
if (sys.step_control.end_motion)
return;
while (segment_buffer_tail != segment_next_head) { // Check if we need to fill the buffer.
// Determine if we need to load a new planner block or if the block needs to be recomputed.
if (pl_block == NULL) {
// Query planner for a queued block
pl_block = sys.step_control.execute_sys_motion ? plan_get_system_motion_block() : plan_get_current_block();
if (pl_block == NULL)
return; // No planner blocks. Exit.
// Check if we need to only recompute the velocity profile or load a new block.
if (prep.recalculate.velocity_profile) {
if(settings.parking.flags.enabled) {
if (prep.recalculate.parking)
prep.recalculate.velocity_profile = Off;
else
prep.recalculate.flags = 0;
} else
prep.recalculate.flags = 0;
} else {
// Prepare and copy Bresenham algorithm segment data from the new planner block, so that
// when the segment buffer completes the planner block, it may be discarded when the
// segment buffer finishes the prepped block, but the stepper ISR is still executing it.
st_prep_block = st_prep_block->next;
uint_fast8_t idx = N_AXIS;
#ifndef ADAPTIVE_MULTI_AXIS_STEP_SMOOTHING
do {
idx--;
st_prep_block->steps[idx] = (pl_block->steps[idx] << 1);
} while(idx);
st_prep_block->step_event_count = (pl_block->step_event_count << 1);
#else
// With AMASS enabled, simply bit-shift multiply all Bresenham data by the max AMASS
// level, such that we never divide beyond the original data anywhere in the algorithm.
// If the original data is divided, we can lose a step from integer roundoff.
do {
idx--;
st_prep_block->steps[idx] = pl_block->steps[idx] << MAX_AMASS_LEVEL;
} while(idx);
st_prep_block->step_event_count = pl_block->step_event_count << MAX_AMASS_LEVEL;
#endif
st_prep_block->direction_bits = pl_block->direction_bits;
st_prep_block->programmed_rate = pl_block->programmed_rate;
// st_prep_block->r = pl_block->programmed_rate;
st_prep_block->millimeters = pl_block->millimeters;
st_prep_block->steps_per_mm = (float)pl_block->step_event_count / pl_block->millimeters;
st_prep_block->spindle = pl_block->spindle.hal;
st_prep_block->output_commands = pl_block->output_commands;
st_prep_block->overrides = pl_block->overrides;
st_prep_block->offset_id = pl_block->offset_id;
st_prep_block->backlash_motion = pl_block->condition.backlash_motion;
st_prep_block->message = pl_block->message;
pl_block->message = NULL;
// Initialize segment buffer data for generating the segments.
prep.steps_per_mm = st_prep_block->steps_per_mm;
prep.steps_remaining = pl_block->step_event_count;
prep.req_mm_increment = REQ_MM_INCREMENT_SCALAR / prep.steps_per_mm;
prep.dt_remainder = prep.target_position = 0.0f; // Reset for new segment block
#ifdef KINEMATICS_API
prep.rate_multiplier = pl_block->rate_multiplier;
#endif
if (sys.step_control.execute_hold || prep.recalculate.decel_override) {
// New block loaded mid-hold. Override planner block entry speed to enforce deceleration.
prep.current_speed = prep.exit_speed;
pl_block->entry_speed_sqr = prep.exit_speed * prep.exit_speed;
prep.recalculate.decel_override = Off;
} else
prep.current_speed = sqrtf(pl_block->entry_speed_sqr);
// Setup laser mode variables. RPM rate adjusted motions will always complete a motion with the
// spindle off.
if ((st_prep_block->dynamic_rpm = pl_block->condition.is_rpm_rate_adjusted)) {
// Pre-compute inverse programmed rate to speed up RPM updating per step segment.
prep.inv_feedrate = pl_block->condition.is_laser_ppi_mode ? 1.0f : 1.0f / pl_block->programmed_rate;
} else
st_prep_block->dynamic_rpm = !!pl_block->spindle.css;
}
/* ---------------------------------------------------------------------------------
Compute the velocity profile of a new planner block based on its entry and exit
speeds, or recompute the profile of a partially-completed planner block if the
planner has updated it. For a commanded forced-deceleration, such as from a feed
hold, override the planner velocities and decelerate to the target exit speed.
*/
prep.mm_complete = 0.0f; // Default velocity profile complete at 0.0mm from end of block.
float inv_2_accel = 0.5f / pl_block->acceleration;
if (sys.step_control.execute_hold) { // [Forced Deceleration to Zero Velocity]
// Compute velocity profile parameters for a feed hold in-progress. This profile overrides
// the planner block profile, enforcing a deceleration to zero speed.
prep.ramp_type = Ramp_Decel;
// Compute decelerate distance relative to end of block.
float decel_dist = pl_block->millimeters - inv_2_accel * pl_block->entry_speed_sqr;
if(decel_dist < -0.0001f) {
// Deceleration through entire planner block. End of feed hold is not in this block.
prep.exit_speed = sqrtf(pl_block->entry_speed_sqr - 2.0f * pl_block->acceleration * pl_block->millimeters);
} else {
prep.mm_complete = decel_dist < 0.0001f ? 0.0f : decel_dist; // End of feed hold.
prep.exit_speed = 0.0f;
}
} else { // [Normal Operation]
// Compute or recompute velocity profile parameters of the prepped planner block.
prep.ramp_type = Ramp_Accel; // Initialize as acceleration ramp.
prep.accelerate_until = pl_block->millimeters;
float exit_speed_sqr;
if (sys.step_control.execute_sys_motion)
prep.exit_speed = exit_speed_sqr = 0.0f; // Enforce stop at end of system motion.
else {
exit_speed_sqr = plan_get_exec_block_exit_speed_sqr();
prep.exit_speed = sqrtf(exit_speed_sqr);
}
float nominal_speed = plan_compute_profile_nominal_speed(pl_block);
float nominal_speed_sqr = nominal_speed * nominal_speed;
float intersect_distance = 0.5f * (pl_block->millimeters + inv_2_accel * (pl_block->entry_speed_sqr - exit_speed_sqr));
prep.target_feed = nominal_speed;
if (pl_block->entry_speed_sqr > nominal_speed_sqr) { // Only occurs during override reductions.
prep.accelerate_until = pl_block->millimeters - inv_2_accel * (pl_block->entry_speed_sqr - nominal_speed_sqr);
if (prep.accelerate_until <= 0.0f) { // Deceleration-only.
prep.ramp_type = Ramp_Decel;
// prep.decelerate_after = pl_block->millimeters;
// prep.maximum_speed = prep.current_speed;
// Compute override block exit speed since it doesn't match the planner exit speed.
prep.exit_speed = sqrtf(pl_block->entry_speed_sqr - 2.0f * pl_block->acceleration * pl_block->millimeters);
prep.recalculate.decel_override = On; // Flag to load next block as deceleration override.
// TODO: Determine correct handling of parameters in deceleration-only.
// Can be tricky since entry speed will be current speed, as in feed holds.
// Also, look into near-zero speed handling issues with this.
} else {
// Decelerate to cruise or cruise-decelerate types. Guaranteed to intersect updated plan.
prep.decelerate_after = inv_2_accel * (nominal_speed_sqr - exit_speed_sqr); // Should always be >= 0.0 due to planner reinit.
prep.maximum_speed = nominal_speed;
prep.ramp_type = Ramp_DecelOverride;
}
} else if (intersect_distance > 0.0f) {
if (intersect_distance < pl_block->millimeters) { // Either trapezoid or triangle types
// NOTE: For acceleration-cruise and cruise-only types, following calculation will be 0.0.
prep.decelerate_after = inv_2_accel * (nominal_speed_sqr - exit_speed_sqr);
if (prep.decelerate_after < intersect_distance) { // Trapezoid type
prep.maximum_speed = nominal_speed;
if (pl_block->entry_speed_sqr == nominal_speed_sqr) {
// Cruise-deceleration or cruise-only type.
prep.ramp_type = Ramp_Cruise;
} else {
// Full-trapezoid or acceleration-cruise types
prep.accelerate_until -= inv_2_accel * (nominal_speed_sqr - pl_block->entry_speed_sqr);
}
} else { // Triangle type
prep.accelerate_until = prep.decelerate_after = intersect_distance;
prep.maximum_speed = sqrtf(2.0f * pl_block->acceleration * intersect_distance + exit_speed_sqr);
}
} else { // Deceleration-only type
prep.ramp_type = Ramp_Decel;
// prep.decelerate_after = pl_block->millimeters;
// prep.maximum_speed = prep.current_speed;
}
} else { // Acceleration-only type
prep.accelerate_until = 0.0f;
// prep.decelerate_after = 0.0f;
prep.maximum_speed = prep.exit_speed;
}
}
if(state_get() != STATE_HOMING)
sys.step_control.update_spindle_rpm |= pl_block->spindle.hal->cap.laser; // Force update whenever updating block in laser mode.
probe_asserted = false;
}
// Block adding new segments after probe is asserted until deceleration is started.
if(probe_asserted)
return;
// Initialize new segment
segment_t *prep_segment = segment_buffer_head;
// Set new segment to point to the current segment data block.
prep_segment->exec_block = st_prep_block;
prep_segment->update_rpm = NULL;
prep_segment->update_pwm = NULL;
/*------------------------------------------------------------------------------------
Compute the average velocity of this new segment by determining the total distance
traveled over the segment time DT_SEGMENT. The following code first attempts to create
a full segment based on the current ramp conditions. If the segment time is incomplete
when terminating at a ramp state change, the code will continue to loop through the
progressing ramp states to fill the remaining segment execution time. However, if
an incomplete segment terminates at the end of the velocity profile, the segment is
considered completed despite having a truncated execution time less than DT_SEGMENT.
The velocity profile is always assumed to progress through the ramp sequence:
acceleration ramp, cruising state, and deceleration ramp. Each ramp's travel distance
may range from zero to the length of the block. Velocity profiles can end either at
the end of planner block (typical) or mid-block at the end of a forced deceleration,
such as from a feed hold.
*/
float dt_max = DT_SEGMENT; // Maximum segment time
float dt = 0.0f; // Initialize segment time
float time_var = dt_max; // Time worker variable
#if ENABLE_JERK_ACCELERATION
float last_segment_accel = 0.0f; // Acceleration value of last computed segment. Initialize as 0.0
#endif
float mm_var; // mm - Distance worker variable
float speed_var; // Speed worker variable
float mm_remaining = pl_block->millimeters; // New segment distance from end of block.
float minimum_mm = mm_remaining - prep.req_mm_increment; // Guarantee at least one step.
if (minimum_mm < 0.0f)
minimum_mm = 0.0f;
do {
switch (prep.ramp_type) {
case Ramp_DecelOverride:
speed_var = pl_block->acceleration * time_var;
if ((prep.current_speed - prep.maximum_speed) <= speed_var) {
// Cruise or cruise-deceleration types only for deceleration override.
mm_remaining = prep.accelerate_until;
time_var = 2.0f * (pl_block->millimeters - mm_remaining) / (prep.current_speed + prep.maximum_speed);
prep.ramp_type = Ramp_Cruise;
prep.current_speed = prep.maximum_speed;
} else {// Mid-deceleration override ramp.
mm_remaining -= time_var * (prep.current_speed - 0.5f * speed_var);
prep.current_speed -= speed_var;
}
break;
case Ramp_Accel:
// NOTE: Acceleration ramp only computes during first do-while loop.
#if ENABLE_JERK_ACCELERATION
if (((mm_remaining - prep.accelerate_until) / (prep.current_speed + 0.001f)) <= (last_segment_accel / pl_block->jerk)) {
//+0.001f to avoid divide by 0 speed, minor effect on jerk ramp (+1.0f was too large for low jerk values)
// Check if we are on ramp up or ramp down. Ramp down if time to end of acceleration is less than time needed to reach 0 acceleration.
// Then limit acceleration change by jerk up to max acceleration and update for next segment.
// Minimum acceleration jerk per time_var to ensure acceleartion completes. Acceleration change at end of ramp is in acceptable jerk range.
last_segment_accel = max(last_segment_accel - pl_block->jerk * time_var, pl_block->jerk * time_var);
} else {
last_segment_accel = min(last_segment_accel + pl_block->jerk * time_var, pl_block->max_acceleration);
}
speed_var = last_segment_accel * time_var;
#else
speed_var = pl_block->acceleration * time_var;
#endif
mm_remaining -= time_var * (prep.current_speed + 0.5f * speed_var);
if (mm_remaining < prep.accelerate_until) { // End of acceleration ramp.
// Acceleration-cruise, acceleration-deceleration ramp junction, or end of block.
mm_remaining = prep.accelerate_until; // NOTE: 0.0 at EOB
time_var = 2.0f * (pl_block->millimeters - mm_remaining) / (prep.current_speed + prep.maximum_speed);
prep.ramp_type = mm_remaining == prep.decelerate_after ? Ramp_Decel : Ramp_Cruise;
prep.current_speed = prep.maximum_speed;
#if ENABLE_JERK_ACCELERATION
last_segment_accel = 0.0f; // reset acceleration variable to 0 for next accel ramp
#endif
} else // Acceleration only.
prep.current_speed += speed_var;
break;
case Ramp_Cruise:
// NOTE: mm_var used to retain the last mm_remaining for incomplete segment time_var calculations.
// NOTE: If maximum_speed*time_var value is too low, round-off can cause mm_var to not change. To
// prevent this, simply enforce a minimum speed threshold in the planner.
mm_var = mm_remaining - prep.maximum_speed * time_var;
if (mm_var < prep.decelerate_after) { // End of cruise.
// Cruise-deceleration junction or end of block.
time_var = (mm_remaining - prep.decelerate_after) / prep.maximum_speed;
mm_remaining = prep.decelerate_after; // NOTE: 0.0 at EOB
prep.ramp_type = Ramp_Decel;
} else // Cruising only.
mm_remaining = mm_var;
break;
default: // case Ramp_Decel:
// NOTE: mm_var used as a misc worker variable to prevent errors when near zero speed.
#if ENABLE_JERK_ACCELERATION
if ((mm_remaining / (prep.current_speed + 0.001f)) <= (last_segment_accel / pl_block->jerk)) {
//+0.001f to avoid divide by 0 speed, minor effect on jerk ramp (+1.0f was too large for low jerk values)
// Check if we are on ramp up or ramp down. Ramp down if time to end of deceleration is less than time needed to reach 0 acceleration.
// Then limit acceleration change by jerk up to max acceleration and update for next segment.
// Minimum acceleration of jerk per time_var to ensure acceleration completes. Acceleration change at end of ramp is in acceptable jerk range.
last_segment_accel = max(last_segment_accel - pl_block->jerk * time_var, pl_block->jerk * time_var);
} else {
last_segment_accel = min(last_segment_accel + pl_block->jerk * time_var, pl_block->max_acceleration);
}
speed_var = last_segment_accel * time_var; // Used as delta speed (mm/min)
#else
speed_var = pl_block->acceleration * time_var; // Used as delta speed (mm/min)
#endif
if (prep.current_speed > speed_var) { // Check if at or below zero speed.
// Compute distance from end of segment to end of block.
mm_var = mm_remaining - time_var * (prep.current_speed - 0.5f * speed_var); // (mm)
if (mm_var > prep.mm_complete) { // Typical case. In deceleration ramp.
mm_remaining = mm_var;
prep.current_speed -= speed_var;
break; // Segment complete. Exit switch-case statement. Continue do-while loop.
}
}
// Otherwise, at end of block or end of forced-deceleration.
time_var = 2.0f * (mm_remaining - prep.mm_complete) / (prep.current_speed + prep.exit_speed);
mm_remaining = prep.mm_complete;
prep.current_speed = prep.exit_speed;
}
dt += time_var; // Add computed ramp time to total segment time.
if (dt < dt_max)
time_var = dt_max - dt;// **Incomplete** At ramp junction.
else {
if (mm_remaining > minimum_mm) { // Check for very slow segments with zero steps.
// Increase segment time to ensure at least one step in segment. Override and loop
// through distance calculations until minimum_mm or mm_complete.
dt_max += DT_SEGMENT;
time_var = dt_max - dt;
} else
break; // **Complete** Exit loop. Segment execution time maxed.
}
} while (mm_remaining > prep.mm_complete); // **Complete** Exit loop. Profile complete.
/* -----------------------------------------------------------------------------------
Compute spindle spindle speed for step segment
*/
if (sys.step_control.update_spindle_rpm || st_prep_block->dynamic_rpm) {
float rpm;
if (pl_block->spindle.state.on) {
if(pl_block->spindle.css) {
float npos = (float)(pl_block->step_event_count - prep.steps_remaining) / (float)pl_block->step_event_count;
rpm = spindle_set_rpm(pl_block->spindle.hal,