-
Notifications
You must be signed in to change notification settings - Fork 220
/
Copy pathpredict.py
128 lines (118 loc) · 5.51 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import argparse
from utils.helpers import read_lines, normalize
from gector.gec_model import GecBERTModel
def predict_for_file(input_file, output_file, model, batch_size=32, to_normalize=False):
test_data = read_lines(input_file)
predictions = []
cnt_corrections = 0
batch = []
for sent in test_data:
batch.append(sent.split())
if len(batch) == batch_size:
preds, cnt = model.handle_batch(batch)
predictions.extend(preds)
cnt_corrections += cnt
batch = []
if batch:
preds, cnt = model.handle_batch(batch)
predictions.extend(preds)
cnt_corrections += cnt
result_lines = [" ".join(x) for x in predictions]
if to_normalize:
result_lines = [normalize(line) for line in result_lines]
with open(output_file, 'w') as f:
f.write("\n".join(result_lines) + '\n')
return cnt_corrections
def main(args):
# get all paths
model = GecBERTModel(vocab_path=args.vocab_path,
model_paths=args.model_path,
max_len=args.max_len, min_len=args.min_len,
iterations=args.iteration_count,
min_error_probability=args.min_error_probability,
lowercase_tokens=args.lowercase_tokens,
model_name=args.transformer_model,
special_tokens_fix=args.special_tokens_fix,
log=False,
confidence=args.additional_confidence,
del_confidence=args.additional_del_confidence,
is_ensemble=args.is_ensemble,
weigths=args.weights)
cnt_corrections = predict_for_file(args.input_file, args.output_file, model,
batch_size=args.batch_size,
to_normalize=args.normalize)
# evaluate with m2 or ERRANT
print(f"Produced overall corrections: {cnt_corrections}")
if __name__ == '__main__':
# read parameters
parser = argparse.ArgumentParser()
parser.add_argument('--model_path',
help='Path to the model file.', nargs='+',
required=True)
parser.add_argument('--vocab_path',
help='Path to the model file.',
default='data/output_vocabulary' # to use pretrained models
)
parser.add_argument('--input_file',
help='Path to the evalset file',
required=True)
parser.add_argument('--output_file',
help='Path to the output file',
required=True)
parser.add_argument('--max_len',
type=int,
help='The max sentence length'
'(all longer will be truncated)',
default=50)
parser.add_argument('--min_len',
type=int,
help='The minimum sentence length'
'(all longer will be returned w/o changes)',
default=3)
parser.add_argument('--batch_size',
type=int,
help='The size of hidden unit cell.',
default=128)
parser.add_argument('--lowercase_tokens',
type=int,
help='Whether to lowercase tokens.',
default=0)
parser.add_argument('--transformer_model',
choices=['bert', 'gpt2', 'transformerxl', 'xlnet', 'distilbert', 'roberta', 'albert'
'bert-large', 'roberta-large', 'xlnet-large'],
help='Name of the transformer model.',
default='roberta')
parser.add_argument('--iteration_count',
type=int,
help='The number of iterations of the model.',
default=5)
parser.add_argument('--additional_confidence',
type=float,
help='How many probability to add to $KEEP token.',
default=0)
parser.add_argument('--additional_del_confidence',
type=float,
help='How many probability to add to $DELETE token.',
default=0)
parser.add_argument('--min_error_probability',
type=float,
help='Minimum probability for each action to apply. '
'Also, minimum error probability, as described in the paper.',
default=0.0)
parser.add_argument('--special_tokens_fix',
type=int,
help='Whether to fix problem with [CLS], [SEP] tokens tokenization. '
'For reproducing reported results it should be 0 for BERT/XLNet and 1 for RoBERTa.',
default=1)
parser.add_argument('--is_ensemble',
type=int,
help='Whether to do ensembling.',
default=0)
parser.add_argument('--weights',
help='Used to calculate weighted average', nargs='+',
default=None)
parser.add_argument('--normalize',
help='Use for text simplification.',
action='store_true')
args = parser.parse_args()
main(args)