-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathtorch_imagenet_resnet.py
406 lines (374 loc) · 11.4 KB
/
torch_imagenet_resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
"""ImageNet and ResNet training script."""
from __future__ import annotations
import argparse
import datetime
import os
import time
import warnings
import torch
import torch.distributed as dist
import torchvision.models as models
from torch.utils import collect_env
from torch.utils.tensorboard import SummaryWriter
import examples.vision.datasets as datasets
import examples.vision.engine as engine
import examples.vision.optimizers as optimizers
from examples.utils import LabelSmoothLoss
from examples.utils import save_checkpoint
try:
from torch.cuda.amp import GradScaler
TORCH_FP16 = True
except ImportError:
TORCH_FP16 = False
warnings.filterwarnings('ignore', '(Possibly )?corrupt EXIF data', UserWarning)
def parse_args() -> argparse.Namespace:
"""Get cmd line args."""
# General settings
parser = argparse.ArgumentParser(
description='PyTorch ImageNet Example',
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
'--train-dir',
default='/tmp/imagenet/ILSVRC2012_img_train/',
help='path to training data',
)
parser.add_argument(
'--val-dir',
default='/tmp/imagenet/ILSVRC2012_img_val/',
help='path to validation data',
)
parser.add_argument(
'--log-dir',
default='./logs/torch_imagenet',
help='TensorBoard/checkpoint log directory',
)
parser.add_argument(
'--checkpoint-format',
default='checkpoint_{epoch}.pth.tar',
help='checkpoint file format',
)
parser.add_argument(
'--no-cuda',
action='store_true',
default=False,
help='disables CUDA training',
)
parser.add_argument(
'--seed',
type=int,
default=42,
metavar='S',
help='random seed (default: 42)',
)
parser.add_argument(
'--fp16',
action='store_true',
default=False,
help='use torch.cuda.amp for fp16 training (default: false)',
)
# Default settings from https://arxiv.org/abs/1706.02677.
parser.add_argument(
'--model',
default='resnet50',
help='Model (resnet{35,50,101,152})',
)
parser.add_argument(
'--batch-size',
type=int,
default=32,
help='input batch size for training',
)
parser.add_argument(
'--val-batch-size',
type=int,
default=32,
help='input batch size for validation',
)
parser.add_argument(
'--batches-per-allreduce',
type=int,
default=1,
help='number of batches processed locally before '
'executing allreduce across workers; it multiplies '
'total batch size.',
)
parser.add_argument(
'--epochs',
type=int,
default=55,
help='number of epochs to train (default: 55)',
)
parser.add_argument(
'--base-lr',
type=float,
default=0.0125,
help='learning rate for a single GPU (default: 0.0125)',
)
parser.add_argument(
'--lr-decay',
nargs='+',
type=int,
default=[25, 35, 40, 45, 50],
help='epoch intervals to decay lr (default: 25,35,40,45,50)',
)
parser.add_argument(
'--warmup-epochs',
type=float,
default=5,
help='number of warmup epochs',
)
parser.add_argument(
'--momentum',
type=float,
default=0.9,
help='SGD momentum',
)
parser.add_argument(
'--weight-decay',
type=float,
default=0.00005,
help='weight decay',
)
parser.add_argument(
'--label-smoothing',
type=float,
default=0.1,
help='label smoothing (default 0.1)',
)
parser.add_argument(
'--checkpoint-freq',
type=int,
default=5,
help='epochs between checkpoints',
)
# KFAC Parameters
parser.add_argument(
'--kfac-inv-update-steps',
type=int,
default=100,
help='iters between kfac inv ops (0 disables kfac) (default: 100)',
)
parser.add_argument(
'--kfac-factor-update-steps',
type=int,
default=10,
help='iters between kfac cov ops (default: 10)',
)
parser.add_argument(
'--kfac-update-steps-alpha',
type=float,
default=10,
help='KFAC update freq multiplier (default: 10)',
)
parser.add_argument(
'--kfac-update-steps-decay',
nargs='+',
type=int,
default=None,
help='KFAC update freq decay schedule (default None)',
)
parser.add_argument(
'--kfac-inv-method',
action='store_true',
default=False,
help='Use inverse KFAC update instead of eigen (default False)',
)
parser.add_argument(
'--kfac-factor-decay',
type=float,
default=0.95,
help='Alpha value for covariance accumulation (default: 0.95)',
)
parser.add_argument(
'--kfac-damping',
type=float,
default=0.001,
help='KFAC damping factor (defaultL 0.001)',
)
parser.add_argument(
'--kfac-damping-alpha',
type=float,
default=0.5,
help='KFAC damping decay factor (default: 0.5)',
)
parser.add_argument(
'--kfac-damping-decay',
nargs='+',
type=int,
default=None,
help='KFAC damping decay schedule (default None)',
)
parser.add_argument(
'--kfac-kl-clip',
type=float,
default=0.001,
help='KL clip (default: 0.001)',
)
parser.add_argument(
'--kfac-skip-layers',
nargs='+',
type=str,
default=[],
help='Layer types to ignore registering with KFAC (default: [])',
)
parser.add_argument(
'--kfac-colocate-factors',
action='store_true',
default=True,
help='Compute A and G for a single layer on the same worker. ',
)
parser.add_argument(
'--kfac-strategy',
type=str,
default='comm-opt',
help='KFAC communication optimization strategy. One of comm-opt, '
'mem-opt, or hybrid_opt. (default: comm-opt)',
)
parser.add_argument(
'--kfac-grad-worker-fraction',
type=float,
default=0.25,
help='Fraction of workers to compute the gradients '
'when using HYBRID_OPT (default: 0.25)',
)
parser.add_argument(
'--backend',
type=str,
default='nccl',
help='backend for distribute training (default: nccl)',
)
# Set automatically by torch distributed launch
parser.add_argument(
'--local_rank',
type=int,
default=0,
help='local rank for distributed training',
)
args = parser.parse_args()
if 'LOCAL_RANK' in os.environ:
args.local_rank = int(os.environ['LOCAL_RANK'])
args.cuda = not args.no_cuda and torch.cuda.is_available()
return args
if __name__ == '__main__':
torch.multiprocessing.set_start_method('spawn')
args = parse_args()
torch.distributed.init_process_group(
backend=args.backend,
init_method='env://',
)
torch.distributed.barrier()
if args.cuda:
torch.cuda.set_device(args.local_rank)
torch.cuda.manual_seed(args.seed)
# torch.backends.cudnn.benchmark = False
# torch.backends.cudnn.deterministic = True
args.base_lr = (
args.base_lr * dist.get_world_size() * args.batches_per_allreduce
)
args.verbose = dist.get_rank() == 0
if args.verbose:
print('Collecting env info...')
print(collect_env.get_pretty_env_info())
print()
for r in range(torch.distributed.get_world_size()):
if r == torch.distributed.get_rank():
print(
f'Global rank {torch.distributed.get_rank()} initialized: '
f'local_rank = {args.local_rank}, '
f'world_size = {torch.distributed.get_world_size()}',
)
torch.distributed.barrier()
train_sampler, train_loader, _, val_loader = datasets.get_imagenet(args)
if args.model.lower() == 'resnet50':
model = models.resnet50()
elif args.model.lower() == 'resnet101':
model = models.resnet101()
elif args.model.lower() == 'resnet152':
model = models.resnet152()
device = 'cpu' if not args.cuda else 'cuda'
model.to(device)
model = torch.nn.parallel.DistributedDataParallel(
model,
device_ids=[args.local_rank],
)
os.makedirs(args.log_dir, exist_ok=True)
args.checkpoint_format = os.path.join(args.log_dir, args.checkpoint_format)
args.log_writer = SummaryWriter(args.log_dir) if args.verbose else None
# If set > 0, will resume training from a given checkpoint.
args.resume_from_epoch = 0
for try_epoch in range(args.epochs, 0, -1):
if os.path.exists(args.checkpoint_format.format(epoch=try_epoch)):
args.resume_from_epoch = try_epoch
break
scaler = None
if args.fp16:
if not TORCH_FP16:
raise ValueError(
'The installed version of torch does not '
'support torch.cuda.amp fp16 training. This '
'requires torch version >= 1.16',
)
scaler = GradScaler()
args.grad_scaler = scaler
(
optimizer,
preconditioner,
(lr_scheduler, kfac_scheduler),
) = optimizers.get_optimizer(
model,
args,
)
if args.verbose and preconditioner is not None:
print(preconditioner)
loss_func = LabelSmoothLoss(args.label_smoothing)
# Restore from a previous checkpoint, if initial_epoch is specified.
if args.resume_from_epoch > 0:
filepath = args.checkpoint_format.format(epoch=args.resume_from_epoch)
map_location = {'cuda:0': f'cuda:{args.local_rank}'}
checkpoint = torch.load(filepath, map_location=map_location)
model.module.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
if checkpoint['lr_scheduler'] is not None:
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
if (
checkpoint['preconditioner'] is not None
and preconditioner is not None
):
preconditioner.load_state_dict(checkpoint['preconditioner'])
start = time.time()
for epoch in range(args.resume_from_epoch + 1, args.epochs + 1):
engine.train(
epoch,
model,
optimizer,
preconditioner,
loss_func,
train_sampler,
train_loader,
args,
)
engine.test(epoch, model, loss_func, val_loader, args)
lr_scheduler.step()
if kfac_scheduler is not None:
kfac_scheduler.step(step=epoch)
if (
epoch > 0
and epoch % args.checkpoint_freq == 0
and dist.get_rank() == 0
):
# Note: save model.module b/c model may be Distributed wrapper
# so saving the underlying model is more generic
save_checkpoint(
model.module,
optimizer,
preconditioner,
lr_scheduler,
args.checkpoint_format.format(epoch=epoch),
)
if args.verbose:
print(
'\nTraining time: {}'.format(
datetime.timedelta(seconds=time.time() - start),
),
)