-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn.py
115 lines (96 loc) · 4.52 KB
/
nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
"""
Created by Gotham on 24-06-2018.
"""
import numpy
class ActivationFunction:
def __init__(self, func_type="sigmoid"):
self.func_type = func_type
def func(self, x):
if self.func_type == "sigmoid":
return 1 / (1 + numpy.exp(-x))
elif self.func_type == "tanh":
return numpy.tanh(x)
def derivative(self, y):
if self.func_type == "sigmoid":
return y * (1 - y)
elif self.func_type == "tanh":
return 1 - (y * y)
class NeuralNetwork:
def __init__(self, network=None, new_nn_dict=None):
if network is None:
self.input_nodes = new_nn_dict['input_nodes']
self.hidden_nodes = new_nn_dict['hidden_nodes']
self.output_nodes = new_nn_dict['out_nodes']
self.weights_ih = self.get_random_filled_matrix(rows=self.hidden_nodes, cols=self.input_nodes)
self.weights_ho = self.get_random_filled_matrix(rows=self.output_nodes, cols=self.hidden_nodes)
self.bias_h = self.get_random_filled_matrix(self.hidden_nodes, 1)
self.bias_o = self.get_random_filled_matrix(self.output_nodes, 1)
else:
self.input_nodes = network.input_nodes
self.hidden_nodes = network.hidden_nodes
self.output_nodes = network.output_nodes
self.weights_ih = numpy.copy(network.weight_ih)
self.weights_ho = numpy.copy(network.weight_ho)
self.bias_h = numpy.copy(network.bias_h)
self.bias_o = numpy.copy(network.bias_o)
self.activation_function = ActivationFunction()
self.vectorized_func = numpy.vectorize(self.activation_function.func)
self.vectorized_derivative = numpy.vectorize(self.activation_function.derivative)
self.learning_rate = 0.1
def set_activation_function(self, func="sigmoid"):
self.activation_function = ActivationFunction(func_type=func)
self.vectorized_func = numpy.vectorize(self.activation_function.func)
self.vectorized_derivative = numpy.vectorize(self.activation_function.derivative)
def set_learning_rate(self, rate=0.1):
self.learning_rate = rate
@staticmethod
def get_matrix(rows, cols):
return numpy.array([[0] * cols for _ in range(rows)])
@staticmethod
def get_random_filled_matrix(rows, cols):
return numpy.random.rand(rows, cols)
def predict(self, input_list):
inputs = numpy.array(input_list)
hidden = numpy.dot(self.weights_ih, inputs)
hidden = numpy.add(hidden, self.bias_h)
hidden = self.vectorized_func(hidden)
output = numpy.dot(self.weights_ho, hidden)
output = numpy.add(output, self.bias_o)
output = self.vectorized_func(output)
return output.tolist()
def train(self, input_list, target_list):
# FEED FORWARD ALGO
inputs = numpy.array(input_list)
hidden = numpy.dot(self.weights_ih, inputs)
hidden = numpy.add(hidden, self.bias_h)
hidden = self.vectorized_func(hidden)
outputs = numpy.dot(self.weights_ho, hidden)
outputs = numpy.add(outputs, self.bias_o)
outputs = self.vectorized_func(outputs)
targets = numpy.array(target_list)
# BACKPROPOGATION ALGO
output_errors = numpy.subtract(targets, outputs)
gradients = self.vectorized_derivative(outputs)
gradients = numpy.multiply(gradients, output_errors)
gradients = numpy.multiply(gradients, self.learning_rate)
hidden_t = numpy.transpose(hidden)
weight_ho_deltas = numpy.dot(gradients, hidden_t)
self.weights_ho = numpy.add(self.weights_ho, weight_ho_deltas)
self.bias_o = numpy.add(self.bias_o, gradients)
who_t = numpy.transpose(self.weights_ho)
hidden_errors = numpy.dot(who_t, output_errors)
hidden_gradient = self.vectorized_derivative(hidden)
hidden_gradient = numpy.multiply(hidden_gradient, hidden_errors)
hidden_gradient = numpy.multiply(hidden_gradient, self.learning_rate)
inputs_t = numpy.transpose(inputs)
weight_ih_deltas = numpy.dot(hidden_gradient, inputs_t)
self.weights_ih = numpy.add(self.weights_ih, weight_ih_deltas)
self.bias_h = numpy.add(self.bias_h, hidden_gradient)
def copy(self):
return NeuralNetwork(self)
def mutate(self, func):
func1 = numpy.vectorize(func)
self.weights_ih = func1(self.weights_ih)
self.weights_ho = func1(self.weights_ho)
self.bias_h = func1(self.bias_h)
self.bias_o = func1(self.bias_o)