This document goes over the example of using DeepVariant Fast Pipeline with PacBio data.
Fast Pipeline is a DeepVariant feature that allows parallelization of the make_examples and call_variant stages. It is especially useful for machines with a GPU. Examples are streamed to call_variants inference, allowing simultaneous utilization of both the CPU and GPU. Please note that this feature is still experimental.
This setup requires a machine with a GPU. For this case study, we will use a
n1-standard-16
compute instance with 1 Nvidia P4 GPU. However, this setup is
not optimal, as 16 cores may not be sufficient to fully utilize the GPU. In a
real-life scenario, allocating 32 cores for make_examples
would ensure better
GPU utilization and improved runtime.
Here we create Google Cloud compute instance. You may skip this step if you run the case study on a local computer with GPU.
gcloud compute instances create "deepvariant-fast-pipeline" \
--scopes "compute-rw,storage-full,cloud-platform" \
--maintenance-policy "TERMINATE" \
--accelerator=type=nvidia-tesla-p4,count=1 \
--image-family "ubuntu-2204-lts" \
--image-project "ubuntu-os-cloud" \
--machine-type "n1-standard-16" \
--boot-disk-size "100" \
--zone "us-central1-a"
You can then ssh into the machine by running:
gcloud compute ssh "deepvariant-fast-pipeline" --zone us-central1-a
CUDA drivers and NVIDIA Container toolkit are required to run the case study. Please refer to the following documentation for more details. NVIDIA CUDA Installation Guide for Linux, Installing the NVIDIA Container Toolkit
For this case study we used the script that automates the CUDA and container tools kit installation.
Please note that the script takes about 30 minutes to run.
wget https://raw.githubusercontent.com/google/deepvariant/refs/heads/r1.8.0/scripts/install_nvidia_docker.sh
chmod +x install_nvidia_docker.sh
./install_nvidia_docker.sh
BIN_VERSION="1.8.0"
sudo docker pull google/deepvariant:"${BIN_VERSION}-gpu"
Before you start running, you need to have the following input files:
- A reference genome in [FASTA] format and its corresponding index file (.fai).
mkdir -p reference
gcloud storage cp gs://deepvariant/case-study-testdata/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna* reference/
- An aligned reads file in [BAM] format and its corresponding index file (.bai). You get this by aligning the reads from a sequencing instrument, using an aligner like [BWA] for example.
mkdir -p input
gcloud storage cp gs://deepvariant/pacbio-case-study-testdata/HG003.SPRQ.pacbio.GRCh38.nov2024.chr20.bam* input/
fast_pipeline
binary in DeepVariant docker allows to run make_examples
and
call_variant
stages of DeepVariant in stream mode. Here is the command line to
run the fast_pipeline
Config files below contain all default command line parameters for PacBio data.
--examples
and --gvcf
flags are set with the sharded file names. ==It is
important to ensure that the number of shards matches in all config files and
the --num_shards
flag in the fast_pipeline binary. In our case it is set to
14==
The machine has 16 virtual cores, but we set the number of shards to 14 to reserve 2 cores for the input pipeline in call_variants. Insufficient CPU resources for the inference pipeline can cause an input bottleneck, leading to a slowdown in the inference stage.
mkdir -p config
FILE=config/make_examples.ini
cat <<EOM >$FILE
--examples=/tmp/[email protected]
--gvcf=/tmp/[email protected]
--mode=calling
--reads=/input/HG003.SPRQ.pacbio.GRCh38.nov2024.chr20.bam
--ref=/reference/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
--alt_aligned_pileup=diff_channels
--max_reads_per_partition=600
--min_mapping_quality=1
--parse_sam_aux_fields
--partition_size=25000
--phase_reads
--pileup_image_width=147
--norealign_reads
--sort_by_haplotypes
--track_ref_reads
--vsc_min_fraction_indels=0.12
--trim_reads_for_pileup
--call_small_model_examples
--trained_small_model_path=/opt/smallmodels/pacbio
--small_model_snp_gq_threshold=25
--small_model_indel_gq_threshold=30
--small_model_vaf_context_window_size=51
--output_phase_info
--checkpoint=/opt/models/pacbio
--regions=chr20
EOM
FILE=config/call_variants.ini
cat <<EOM >$FILE
--outfile=/output/case_study.cvo.tfrecord.gz
--checkpoint=/opt/models/pacbio
--batch_size=1024
--writer_threads=1
EOM
FILE=config/postprocess_variants.ini
cat <<EOM >$FILE
--ref=/reference/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
--infile=/output/case_study.cvo.tfrecord.gz
--nonvariant_site_tfrecord_path=/tmp/[email protected]
--outfile=/output/variants.chr20.vcf
--gvcf_outfile=/output/variants.gvcf.chr20.vcf
--small_model_cvo_records=/tmp/[email protected]
--cpus=14
EOM
time sudo docker run \
-v "${PWD}/config":"/config" \
-v "${PWD}/input":"/input" \
-v "${PWD}/output":"/output" \
-v "${PWD}/reference":"/reference" \
-v /tmp:/tmp \
--gpus all \
-e DV_BIN_PATH=/opt/deepvariant/bin \
--shm-size=2gb \
google/deepvariant:"${BIN_VERSION}-gpu" \
/opt/deepvariant/bin/fast_pipeline \
--make_example_flags /config/make_examples.ini \
--call_variants_flags /config/call_variants.ini \
--postprocess_variants_flags /config/postprocess_variants.ini \
--shm_prefix dv \
--num_shards 14 \
--buffer_size 10485760 \
2>&1 | tee /tmp/fast_pipeline.docker.log
-v
allows to map local directory inside docker container.-e
we need to setDV_BIN_PATH
environment variable to point to DeepVariant binaries directory inside the container.--shm-size
sets the size of shared memory available to the container. It has to be larger than--buffer_size
x--num_shards
. In our case buffer_size is 10M and we run 14 shards, so 2gb would be large enough to accommodate buffers and all synchronization objects for each shard.
--make_example_flags
- path to the file containingmake_examples
command line parameters.--call_variants_flags
- path to the file containingcall_variants
command line parameters.--postprocess_variants_flags
- path to the file containingpostprocess_variants
command line parameters.--shm_prefix
- prefix for shared memory files. It is an arbitrary name.--num_shards
- number of parallel processes to runmake_examples
--buffer_size
- shared memory buffer size for each process.
On a successful completion the output
directory will contain two VCF files:
variants.chr20.vcf
variants.gvcf.chr20.vcf
With the same settings the pipeline takes approximately 10 minutes.
real 8m15.252s
user 0m0.007s
sys 0m0.035s
Download benchmark data:
mkdir -p benchmark
FTPDIR=ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003_NA24149_father/NISTv4.2.1/GRCh38
curl ${FTPDIR}/HG003_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed > benchmark/HG003_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed
curl ${FTPDIR}/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz > benchmark/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz
curl ${FTPDIR}/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz.tbi > benchmark/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz.tbi
HAPPY_VERSION=v0.3.12
time sudo docker run \
-v ${PWD}/output:/output \
-v ${PWD}/benchmark:/benchmark \
-v ${PWD}/reference:/reference \
jmcdani20/hap.py:${HAPPY_VERSION} \
/opt/hap.py/bin/hap.py \
/benchmark/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz \
/output/variants.chr20.vcf \
-f /benchmark/HG003_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed \
-r /reference/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna \
-o /output/happy.output \
--engine=vcfeval \
--pass-only \
-l "chr20"
Benchmarking Summary:
Type Filter TRUTH.TOTAL TRUTH.TP TRUTH.FN QUERY.TOTAL QUERY.FP QUERY.UNK FP.gt FP.al METRIC.Recall METRIC.Precision METRIC.Frac_NA METRIC.F1_Score TRUTH.TOTAL.TiTv_ratio QUERY.TOTAL.TiTv_ratio TRUTH.TOTAL.het_hom_ratio QUERY.TOTAL.het_hom_ratio
INDEL ALL 10628 10543 85 22403 74 11375 40 29 0.992002 0.993290 0.507744 0.992646 NaN NaN 1.748961 2.138647
INDEL PASS 10628 10543 85 22403 74 11375 40 29 0.992002 0.993290 0.507744 0.992646 NaN NaN 1.748961 2.138647
SNP ALL 70166 70101 65 105602 71 35342 12 12 0.999074 0.998989 0.334672 0.999032 2.296566 1.713281 1.883951 1.503192
SNP PASS 70166 70101 65 105602 71 35342 12 12 0.999074 0.998989 0.334672 0.999032 2.296566 1.713281 1.883951 1.503192