forked from Medical-AI-Lab-of-JNU/HFPA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSmilesEnumerator.py
253 lines (213 loc) · 9.45 KB
/
SmilesEnumerator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#Experimental Class for Smiles Enumeration, Iterator and SmilesIterator adapted from Keras 1.2.2
from rdkit import Chem
import numpy as np
import threading
class Iterator(object):
"""Abstract base class for data iterators.
# Arguments
n: Integer, total number of samples in the dataset to loop over.
batch_size: Integer, size of a batch.
shuffle: Boolean, whether to shuffle the data between epochs.
seed: Random seeding for data shuffling.
"""
def __init__(self, n, batch_size, shuffle, seed):
self.n = n
self.batch_size = batch_size
self.shuffle = shuffle
self.batch_index = 0
self.total_batches_seen = 0
self.lock = threading.Lock()
self.index_generator = self._flow_index(n, batch_size, shuffle, seed)
if n < batch_size:
raise ValueError('Input data length is shorter than batch_size\nAdjust batch_size')
def reset(self):
self.batch_index = 0
def _flow_index(self, n, batch_size=32, shuffle=False, seed=None):
# Ensure self.batch_index is 0.
self.reset()
while 1:
if seed is not None:
np.random.seed(seed + self.total_batches_seen)
if self.batch_index == 0:
index_array = np.arange(n)
if shuffle:
index_array = np.random.permutation(n)
current_index = (self.batch_index * batch_size) % n
if n > current_index + batch_size:
current_batch_size = batch_size
self.batch_index += 1
else:
current_batch_size = n - current_index
self.batch_index = 0
self.total_batches_seen += 1
yield (index_array[current_index: current_index + current_batch_size],
current_index, current_batch_size)
def __iter__(self):
# Needed if we want to do something like:
# for x, y in data_gen.flow(...):
return self
def __next__(self, *args, **kwargs):
return self.next(*args, **kwargs)
class SmilesIterator(Iterator):
"""Iterator yielding data from a SMILES array.
# Arguments
x: Numpy array of SMILES input data.
y: Numpy array of targets data.
smiles_data_generator: Instance of `SmilesEnumerator`
to use for random SMILES generation.
batch_size: Integer, size of a batch.
shuffle: Boolean, whether to shuffle the data between epochs.
seed: Random seed for data shuffling.
dtype: dtype to use for returned batch. Set to keras.backend.floatx if using Keras
"""
def __init__(self, x, y, smiles_data_generator,
batch_size=32, shuffle=False, seed=None,
dtype=np.float32
):
if y is not None and len(x) != len(y):
raise ValueError('X (images tensor) and y (labels) '
'should have the same length. '
'Found: X.shape = %s, y.shape = %s' %
(np.asarray(x).shape, np.asarray(y).shape))
self.x = np.asarray(x)
if y is not None:
self.y = np.asarray(y)
else:
self.y = None
self.smiles_data_generator = smiles_data_generator
self.dtype = dtype
super(SmilesIterator, self).__init__(x.shape[0], batch_size, shuffle, seed)
def next(self):
"""For python 2.x.
# Returns
The next batch.
"""
# Keeps under lock only the mechanism which advances
# the indexing of each batch.
with self.lock:
index_array, current_index, current_batch_size = next(self.index_generator)
# The transformation of images is not under thread lock
# so it can be done in parallel
batch_x = np.zeros(tuple([current_batch_size] + [ self.smiles_data_generator.pad, self.smiles_data_generator._charlen]), dtype=self.dtype)
for i, j in enumerate(index_array):
smiles = self.x[j:j+1]
x = self.smiles_data_generator.transform(smiles)
batch_x[i] = x
if self.y is None:
return batch_x
batch_y = self.y[index_array]
return batch_x, batch_y
class SmilesEnumerator(object):
"""SMILES Enumerator, vectorizer and devectorizer
#Arguments
charset: string containing the characters for the vectorization
can also be generated via the .fit() method
pad: Length of the vectorization
leftpad: Add spaces to the left of the SMILES
isomericSmiles: Generate SMILES containing information about stereogenic centers
enum: Enumerate the SMILES during transform
canonical: use canonical SMILES during transform (overrides enum)
"""
def __init__(self, charset = '@C)(=cOn1S2/H[N]\\', pad=120, leftpad=True, isomericSmiles=True, enum=True, canonical=False):
self._charset = None
self.charset = charset
self.pad = pad
self.leftpad = leftpad
self.isomericSmiles = isomericSmiles
self.enumerate = enum
self.canonical = canonical
@property
def charset(self):
return self._charset
@charset.setter
def charset(self, charset):
self._charset = charset
self._charlen = len(charset)
self._char_to_int = dict((c,i) for i,c in enumerate(charset))
self._int_to_char = dict((i,c) for i,c in enumerate(charset))
def fit(self, smiles, extra_chars=[], extra_pad = 5):
"""Performs extraction of the charset and length of a SMILES datasets and sets self.pad and self.charset
#Arguments
smiles: Numpy array or Pandas series containing smiles as strings
extra_chars: List of extra chars to add to the charset (e.g. "\\\\" when "/" is present)
extra_pad: Extra padding to add before or after the SMILES vectorization
"""
charset = set("".join(list(smiles)))
self.charset = "".join(charset.union(set(extra_chars)))
self.pad = max([len(smile) for smile in smiles]) + extra_pad
def randomize_smiles(self, smiles):
"""Perform a randomization of a SMILES string
must be RDKit sanitizable"""
m = Chem.MolFromSmiles(smiles)
ans = list(range(m.GetNumAtoms()))
np.random.shuffle(ans)
nm = Chem.RenumberAtoms(m,ans)
return Chem.MolToSmiles(nm, canonical=self.canonical, isomericSmiles=self.isomericSmiles)
def transform(self, smiles):
"""Perform an enumeration (randomization) and vectorization of a Numpy array of smiles strings
#Arguments
smiles: Numpy array or Pandas series containing smiles as strings
"""
one_hot = np.zeros((smiles.shape[0], self.pad, self._charlen),dtype=np.int8)
if self.leftpad:
for i,ss in enumerate(smiles):
if self.enumerate: ss = self.randomize_smiles(ss)
l = len(ss)
diff = self.pad - l
for j,c in enumerate(ss):
one_hot[i,j+diff,self._char_to_int[c]] = 1
return one_hot
else:
for i,ss in enumerate(smiles):
if self.enumerate: ss = self.randomize_smiles(ss)
for j,c in enumerate(ss):
one_hot[i,j,self._char_to_int[c]] = 1
return one_hot
def reverse_transform(self, vect):
""" Performs a conversion of a vectorized SMILES to a smiles strings
charset must be the same as used for vectorization.
#Arguments
vect: Numpy array of vectorized SMILES.
"""
smiles = []
for v in vect:
#mask v
v=v[v.sum(axis=1)==1]
#Find one hot encoded index with argmax, translate to char and join to string
smile = "".join(self._int_to_char[i] for i in v.argmax(axis=1))
smiles.append(smile)
return np.array(smiles)
if __name__ == "__main__":
smiles = np.array([ "CCC(=O)O[C@@]1(CC[NH+](C[C@H]1CC=C)C)c2ccccc2",
"CCC[S@@](=O)c1ccc2c(c1)[nH]/c(=N/C(=O)OC)/[nH]2"]*10
)
#Test canonical SMILES vectorization
sm_en = SmilesEnumerator(canonical=True, enum=False)
sm_en.fit(smiles, extra_chars=["\\"])
v = sm_en.transform(smiles)
transformed = sm_en.reverse_transform(v)
if len(set(transformed)) > 2: print("Too many different canonical SMILES generated")
#Test enumeration
sm_en.canonical = False
sm_en.enumerate = True
v2 = sm_en.transform(smiles)
transformed = sm_en.reverse_transform(v2)
if len(set(transformed)) < 3: print("Too few enumerated SMILES generated")
#Reconstruction
reconstructed = sm_en.reverse_transform(v[0:5])
for i, smile in enumerate(reconstructed):
if smile != smiles[i]:
print("Error in reconstruction %s %s"%(smile, smiles[i]))
break
#test Pandas
import pandas as pd
df = pd.DataFrame(smiles)
v = sm_en.transform(df[0])
if v.shape != (20, 52, 18): print("Possible error in pandas use")
#BUG, when batchsize > x.shape[0], then it only returns x.shape[0]!
#Test batch generation
sm_it = SmilesIterator(smiles, np.array([1,2]*10), sm_en, batch_size=10, shuffle=True)
X, y = sm_it.next()
if sum(y==1) - sum(y==2) > 1:
print("Unbalanced generation of batches")
if len(X) != 10: print("Error in batchsize generation")