-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsupport_funs.py
203 lines (184 loc) · 7.7 KB
/
support_funs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""
THIS SCRIPT CONTAINS THE SUPPORT FUNCTIONS NEEDED TO CARRY OUT SAP
"""
# Load necessary modules
import numpy as np
import pandas as pd
from scipy.stats import norm, t
from sklearn.utils import resample
from time import time
def perf_fun(*args, **kwargs):
"""
Function to calculate the performance metric of interest
1) You must use *args and **kwargs
2) 'thresh' must be one of the kwargs
3) This function must return a scalar
"""
assert len(args) == 2
assert 'thresh' in kwargs
thresh = kwargs['thresh']
y, score = args[0], args[1]
assert np.all( (y==0) | (y==1) )
assert thresh <= score.max()
yhat = np.where(score >= thresh, 1, 0)
num_tp = np.sum(yhat[y == 1] == 1)
num_fp = np.sum(yhat[y == 0] == 1)
ppv = num_tp / (num_tp + num_fp)
return ppv
def thresh_find(*args, **kwargs):
"""
Function to find threshold for performance of interest
1) You must use *args and **kwargs
2) 'target' must be one of the kwargs. This is the value you want to get from perf_fun
3) 'jackknife' must be an optional argument in kwargs that will return the function output by leaving one observation out
See: https://en.wikipedia.org/wiki/Jackknife_resampling
Note that many statistics have fast way to calculate the jackknife beyond brute-force
4) This function must return a scalar, or a np.array is jackknife=True
"""
# --- assign --- #
jackknife = False
ret_df = False
if 'jackknife' in kwargs:
jackknife = kwargs['jackknife']
if 'ret_df' in kwargs:
ret_df = kwargs['ret_df']
assert 'target' in kwargs
target = kwargs['target']
assert len(args) == 2
y, score = args[0], args[1]
assert len(y) == len(score)
assert np.all((y==0) | (y==1))
# --- calculate --- #
s0, s1 = score[y == 0], score[y == 1]
u_scores = np.sort(np.unique(s1)) # Useful for step function
if len(u_scores)>1000:
u_scores = np.quantile(u_scores,np.arange(0,1.001,0.001))
store = np.zeros([len(u_scores),2],int)
for ii, tt in enumerate(u_scores):
store[ii] = [np.sum(s0 >= tt), np.sum(s1 >= tt)]
dat = pd.DataFrame(store,columns=['n0','n1']).assign(thresh=u_scores,tot=store.sum(1))
dat = dat.assign(thresh1=lambda x: x.thresh.shift(1), ppv=lambda x: x.n1/(x.tot))
dat = dat.assign(ppv1=lambda x: x.ppv.shift(1), tot1=lambda x: x.tot.shift(1)).iloc[1:]
if ret_df:
return dat
tstar = thresh_interp(dat, target)
# Do a fast interpolation with the Jackknife
# Remember: all s[1]<t and s[0]<t do not impact calculation (i.e. False negatives and True Negatives)
if jackknife:
tmp = dat.query('thresh>=@tstar & thresh1<@tstar')
n0, n1, tot0, tot1 = tmp.n0.values[0], tmp.n1.values[0], tmp.tot1.values[0], tmp.tot.values[0]
thresh0, thresh1 = tmp.thresh1.values[0], tmp.thresh.values[0]
ppv0, ppv1 = tmp.ppv1.values[0], tmp.ppv.values[0]
holder = []
holder.append(np.repeat(tstar,len(score) - tot1)) # Removing all false/true negatives
# Slope for removing TP
ppv1_new, ppv0_new = (n1-1)/tot1, (n1-1)/tot0
slope_new = (ppv1_new - ppv0_new) / (thresh1 - thresh0)
assert ppv1_new < ppv1 # Has to decrease
holder.append(np.repeat(thresh1 + (ppv1 - ppv1_new)/slope_new, n1))
# Note that becasue n1/(tot0-1) = n1/tot1, implies thresh0 will be be the new choice
holder.append(np.repeat(thresh0, n0))
tstar = np.concatenate(holder)
tstar = tstar[np.abs(tstar)!=np.Inf]
return tstar
def thresh_interp(df, target):
"""
LINEARLY INTERPOLATES PPV TO FIND THRESHOLD
"""
df = df.assign(err=lambda x: x.ppv - target).assign(err1 = lambda x: x.ppv1 - target)
idx = df.ppv.isnull()
if idx.sum() > 0:
df = df[~idx]
if df.ppv.max() < target:
#print('exceeds max')
df = df.query('ppv == ppv.max()').sort_values('thresh1').head(1)
elif df.ppv.min() > target:
#print('less than max')
df = df.query('ppv == ppv.min()').sort_values('thresh1').head(1)
else:
df = df[((np.sign(df.err1)==-1) & (np.sign(df.err)==1)) |
((np.sign(df.err1)==-1) & (np.sign(df.err)==0))]
df = df.sort_values('thresh1').head(1)
thresh0, thresh1 = df.thresh1.values[0], df.thresh.values[0]
ppv0, ppv1 = df.ppv1.values[0], df.ppv.values[0]
slope = (ppv1 - ppv0) / (thresh1 - thresh0)
tt = thresh1 - (ppv1 - target)/slope
return tt
def draw_samp(*args, strata=None):
"""
FUNCTION DRAWS DATA WITH REPLACEMENT (WITH STRATIFICATION IF DESIRED)
"""
args = list(args)
if strata is not None:
out = resample(*args, stratify=strata)
else:
out = resample(*args)
if len(args) == 1:
out = [out]
return out
class bootstrap():
def __init__(self, nboot, func):
self.nboot = nboot
self.stat = func
def fit(self, *args, mm=100, **kwargs):
strata=None
if 'strata' in kwargs:
strata = kwargs['strata']
# Get the baseline stat
self.theta = self.stat(*args, **kwargs)
self.store_theta = np.zeros(self.nboot)
self.jn = self.stat(*args, **kwargs, jackknife=True)
self.n = len(self.jn)
stime = time()
for ii in range(self.nboot): # Fit bootstrap
if (ii+1) % mm == 0:
nleft = self.nboot - (ii+1)
rtime = time() - stime
rate = (ii+1)/rtime
eta = nleft / rate
print('Bootstrap %i of %i (ETA=%0.1f minutes)' % (ii+1, self.nboot, eta/60))
args_til = draw_samp(*args, strata=strata)
self.store_theta[ii] = self.stat(*args_til, **kwargs)
self.se = self.store_theta.std()
def get_ci(self, alpha=0.05, symmetric=True):
assert (symmetric==True) | (symmetric=='upper') | (symmetric=='lower')
self.di_ci = {'quantile':[], 'se':[], 'bca':[]}
self.di_ci['quantile'] = self.ci_quantile(alpha, symmetric)
self.di_ci['se'] = self.ci_se(alpha, symmetric)
self.di_ci['bca'] = self.ci_bca(alpha, symmetric)
def ci_quantile(self, alpha, symmetric):
if symmetric==True:
return np.quantile(self.store_theta, [alpha/2,1-alpha/2])
elif symmetric == 'lower':
return np.quantile(self.store_theta, alpha)
else:
return np.quantile(self.store_theta, 1-alpha)
def ci_se(self, alpha, symmetric):
if symmetric==True:
qq = t(df=self.n).ppf(1-alpha/2)
return np.array([self.theta - self.se*qq, self.theta + self.se*qq])
else:
qq = t(df=self.n).ppf(1-alpha)
if symmetric == 'lower':
return self.theta - qq*self.se
else:
return self.theta + qq*self.se
def ci_bca(self, alpha, symmetric):
if symmetric==True:
ql, qu = norm.ppf(alpha/2), norm.ppf(1-alpha/2)
else:
ql, qu = norm.ppf(alpha), norm.ppf(1-alpha)
# Acceleration factor
num = np.sum((self.jn.mean() - self.jn)**3)
den = 6*np.sum((self.jn.mean() - self.jn)**2)**1.5
self.ahat = num / den
# Bias correction factor
self.zhat = norm.ppf(np.mean(self.store_theta < self.theta))
self.a1 = norm.cdf(self.zhat + (self.zhat + ql)/(1-self.ahat*(self.zhat+ql)))
self.a2 = norm.cdf(self.zhat + (self.zhat + qu)/(1-self.ahat*(self.zhat+qu)))
if symmetric==True:
return np.quantile(self.store_theta, [self.a1, self.a2])
elif symmetric=='lower':
return np.quantile(self.store_theta, self.a1)
else:
return np.quantile(self.store_theta, self.a2)