forked from PNNL-CompBio/BeatAMLproteomics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathksea_vis.Rmd
58 lines (39 loc) · 1.39 KB
/
ksea_vis.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
title: "Compare KSEA Results"
author: "Sara Gosline"
date: "3/18/2022"
output: html_document
---
Given the KSEA results, we want to visualize the kinases showing up in every genetic subtypes.
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
## Pull code
```{r pull code and get libraries}
library(dplyr)
library(amlresistancenetworks)
library(dplyr)
library(tidyr)
library(ggplot2)
syn = synapseLogin()
tab <- read.table(syn$get('syn27852574')$path,sep='\t',header=T)
tab%>%subset(adj_p_val<0.05)%>%
ggplot(aes(x=pathway,y=enrichment,fill=mutation))+geom_bar(stat='identity')
ggsave('sigKinEnrichment0.05.pdf')
```
We dont have that many kinases enriched. Let's look at the peptides that are changing!!!
```{r peptides}
ptab<- read.table(syn$get('syn27842983')$path,header=T,sep='\t')
##first let's visualize all the peptides that are coming up
subset(ptab,adj_pval<0.05)%>%
mutate(log10Pval=-log10(adj_pval))%>%
ggplot(aes(x=reorder(feature,log10Pval),y=log10Pval,col=mutation))+
geom_point(aes(alpha=0.5))+
theme(axis.text.x=element_blank())
ggsave('allPecoraResults.pdf')
##now let's plot specific proteins
ptab%>%subset(adj_pval<10e-8)%>%
ggplot(aes(x=Protein,fill=mutation,y=n_peptides))+geom_bar(stat='identity',position='dodge')+
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))
ggsave('sigPecoraResults.pdf')
```