-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_util.py
382 lines (353 loc) · 16.1 KB
/
model_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import caffe
import numpy as np
import tensorflow as tf
tf.logging.set_verbosity(tf.logging.INFO)
class ModelWrapper(object):
def load_model(self):
pass
def predict_floats(self, X):
pass
def predict_ints(self, X):
pass
def save_model(self, paths):
pass
def train_model(self, X, y):
pass
# Define class of simple Tensorflow models.
# These are intended for simple binary classification tasks.
class TensorflowSimpleModel(ModelWrapper):
def __init__(self, model_fn, model_path=None, input_dim=[1, 1, 1024],
flatten_input=True, name='', save_model=True):
self.model_fn = model_fn
self.model_path = model_path
self.model = None
self.input_dim = input_dim
self.name = name
self.save_model = save_model
if type(self.input_dim) != list and \
type(self.input_dim) != tuple : # Implied single number
self.input_dim = [1, 1, self.input_dim]
# Start session and construct graph.
self.init_op = tf.global_variables_initializer()
self.sess = tf.Session()
self.input_tensor = \
tf.placeholder(tf.float32, shape=[None] + list(self.input_dim))
self.label_tensor = tf.placeholder(tf.int64, shape=[None])
self.ex_weight_tensor = tf.placeholder(tf.float32, shape=[None])
if flatten_input:
model_fn_input = tf.layers.flatten(self.input_tensor)
else:
model_fn_input = self.input_tensor
self.loss, self.classes, self.probabilities, self.accuracy = model_fn(
model_fn_input, self.label_tensor, self.ex_weight_tensor)
self.sess.run(self.init_op)
self.saver = tf.train.Saver()
def delete(self):
tf.reset_default_graph()
def load_model(self):
self.saver.restore(self.sess, self.model_path)
def predict_floats(self, X):
# Add additional dimensions if X is "under-dimensional".
if len(X.shape) == 2:
X = X.reshape(X.shape[0], 1, 1, X.shape[1])
softmax_outputs = self.sess.run(
'probabilities:0', feed_dict={self.input_tensor: X})
return softmax_outputs[:, 1]
def predict_ints(self, X):
return self.predict_floats(X)
def reset(self):
tf.reset_default_graph()
self.__init__(self.model_fn, self.model_path, self.input_dim)
def save_model(self, paths):
pass
def train_model(self, X, y, ex_weights=None, batch_size=256, n_epochs=5,
optimizer_fn=tf.train.AdamOptimizer, lr=0.001):
if ex_weights is None:
ex_weights = np.ones([len(y)])
if len(X.shape) == 2:
X = X.reshape(X.shape[0], 1, 1, X.shape[1])
optimizer = optimizer_fn(learning_rate=lr)
train = optimizer.minimize(self.loss)
num_iter = int(n_epochs * len(y) / batch_size)
y = y.astype(np.int32)
# Class balance : try to achieve class balance if possible, else tries
# to fill a batch with the maximum number of minority samples.
if np.sum(y) < 0.5 * batch_size:
pos_weight = np.sum(y) / float(batch_size)
class_balance = [1 - pos_weight, pos_weight]
elif len(y) - np.sum(y) < 0.5 * batch_size:
neg_weight = (len(y) - np.sum(y)) / float(batch_size)
class_balance = [neg_weight, 1 - neg_weight]
else:
class_balance = [0.5, 0.5]
# NOTE: Number of classes currently hardcoded to 2.
pos_idx = np.where(y == 1)[0]
neg_idx = np.where(y == 0)[0]
alpha_pos = ex_weights[pos_idx] / np.sum(ex_weights[pos_idx])
alpha_neg = ex_weights[neg_idx] / np.sum(ex_weights[neg_idx])
batch_num_pos = int(class_balance[1] * batch_size)
batch_num_neg = batch_size - batch_num_pos
self.sess.run(tf.local_variables_initializer())
self.sess.run(tf.global_variables_initializer())
for i in range(num_iter):
# Create balanced input batches.
if batch_num_pos == 0:
idx = np.random.choice(
neg_idx, batch_num_neg, replace=False, p=alpha_neg)
idx = sorted(idx)
X_feed, y_feed = X[idx], y[idx]
alpha_feed = ex_weights[idx]
elif batch_num_neg == 0:
idx = np.random.choice(
pos_idx, batch_num_pos, replace=False, p=alpha_pos)
idx = sorted(idx)
X_feed, y_feed = X[idx], y[idx]
alpha_feed = ex_weights[idx]
else:
pos_ex_idx = np.random.choice(
pos_idx, batch_num_pos, replace=False, p=alpha_pos)
neg_ex_idx = np.random.choice(
neg_idx, batch_num_neg, replace=False, p=alpha_neg)
all_idx = np.hstack([neg_ex_idx, pos_ex_idx])
all_idx = sorted(all_idx)
X_feed, y_feed = X[all_idx], y[all_idx]
_, loss, accuracy = \
self.sess.run([train, self.loss, self.accuracy],
feed_dict={self.input_tensor: X_feed,
self.label_tensor: y_feed,
self.ex_weight_tensor: np.ones(len(y_feed))})
if i % 10 == 0:
print("@{} - loss: {}, accuracy: {}".format(i, loss, accuracy))
if self.save_model:
save_path = self.saver.save(self.sess, self.model_path)
print("Model saved in file: %s" % save_path)
model_dir = '/'.join(self.model_path.split('/')[:-1])
tf.train.write_graph(self.sess.graph, model_dir, 'model.pbtxt')
print("Model graph written to directory: %s" % model_dir)
def simple_classifier(n_hidden=[200], activations=[tf.nn.relu]):
def model_fn(inputs, labels, ex_weights):
onehot_labels = tf.one_hot(indices=tf.cast(labels, tf.int32), depth=2)
onehot_labels = tf.reshape(onehot_labels, [-1, 2])
# Network layers.
if len(n_hidden) == 0:
single_logits = tf.layers.dense(inputs=inputs, units=1)
else:
hidden = tf.layers.dense(
inputs=inputs, units=n_hidden[0], activation=activations[0])
for i in range(1, len(n_hidden)):
hidden = tf.layers.dense(
inputs=hidden, units=n_hidden[i], activation=activations[i])
single_logits = tf.layers.dense(inputs=hidden, units=1)
logits = tf.concat([1 - single_logits, single_logits], axis=1)
# Loss.
loss = tf.losses.softmax_cross_entropy(
onehot_labels=onehot_labels, logits=logits,
reduction=tf.losses.Reduction.NONE)
loss = tf.multiply(loss, ex_weights)
loss = tf.reduce_mean(loss, name="loss")
# Outputs.
classes = tf.argmax(input=logits, axis=1, name="classes")
probabilities = tf.nn.softmax(logits, name="probabilities")
accuracy = tf.contrib.metrics.accuracy(
labels=labels, predictions=classes)
return loss, classes, probabilities, accuracy
return model_fn
def simple_cnn_classifier(filter_layers=[tf.layers.conv2d], filter_size=[(3, 3)],
filter_strides=[(1, 1)], filter_number=[64],
filter_activations=[tf.nn.relu],
filter_padding=['same'], dense_n_hidden=[200],
dense_activations=[tf.nn.relu]):
def model_fn(inputs, labels, ex_weights):
onehot_labels = tf.one_hot(indices=tf.cast(labels, tf.int32), depth=2)
onehot_labels = tf.reshape(onehot_labels, [-1, 2])
# Network layers.
conv_outputs = inputs
for i, conv_layer in enumerate(filter_layers):
conv_outputs = conv_layer(
conv_outputs, filter_number[i], filter_size[i],
strides=filter_strides[i], padding=filter_padding[i],
activation=filter_activations[i])
hidden = tf.layers.flatten(conv_outputs)
for i in range(len(dense_n_hidden)):
hidden = tf.layers.dense(inputs=hidden, units=dense_n_hidden[i],
activation=dense_activations[i])
single_logits = tf.layers.dense(inputs=hidden, units=1)
logits = tf.concat([1 - single_logits, single_logits], axis=1)
# Loss.
loss = tf.losses.softmax_cross_entropy(
onehot_labels=onehot_labels, logits=logits,
reduction=tf.losses.Reduction.NONE)
loss = tf.multiply(loss, ex_weights)
loss = tf.reduce_mean(loss, name="loss")
# Outputs.
classes = tf.argmax(input=logits, axis=1, name="classes")
probabilities = tf.nn.softmax(logits, name="probabilities")
accuracy = tf.contrib.metrics.accuracy(
labels=labels, predictions=classes)
return loss, classes, probabilities, accuracy
return model_fn
def get_simple_tf_model_by_name(model_name):
if model_name == 'simple_classifier':
model_fn = simple_classifier
elif model_name == 'simple_cnn_classifier':
model_fn = simple_cnn_classifier
else:
print("No valid model named %s" % model_name)
exit(1)
return model_fn
# Nearest Neighbor Models.
def compute_pairwise_dists(X, Z):
"""
Inputs are X (N x d) and Z (M x k).
Computes the pairwise euclidean distances between X and Z, and returns
an (N x M) distance matrix D.
Implementation: Computing the matrix of cross-pairwise distances is
equivalent to X**2 - 2 * X Z_T + Z**2
"""
num_X = tf.shape(X)[0]
num_Z = tf.shape(Z)[0]
X_squared_norm = tf.square(tf.norm(X, axis=1))
Z_squared_norm = tf.square(tf.norm(Z, axis=1))
cross_terms = tf.matmul(X, tf.transpose(Z))
D = tf.add(-2 * cross_terms, Z_squared_norm)
D = tf.add(X_squared_norm, tf.transpose(D))
D = tf.sqrt(tf.transpose(D))
return D
def run_pairwise_dists(
sess, X_tensor, Z_tensor, norm_tensor, max_norm_batch_size, X, Z):
# Compute the pairwise Euclidean norm between X and Z in chunks to ensure
# that this will fit into GPU memory.
num_full_norm_batches = len(X) // max_norm_batch_size
norm_batch_remainder = len(X) % max_norm_batch_size
norms = []
for k in range(num_full_norm_batches):
X_slice = X[k*max_norm_batch_size:(k+1)*max_norm_batch_size]
norm_slice = sess.run(
norm_tensor, feed_dict={X_tensor: X_slice, Z_tensor: Z})
norms.append(norm_slice)
if norm_batch_remainder > 0:
X_slice = X[-norm_batch_remainder:]
norm_slice = sess.run(
norm_tensor, feed_dict={X_tensor: X_slice, Z_tensor: Z})
norms.append(norm_slice)
composite_norm_npy = np.vstack(norms)
return composite_norm_npy
class SimpleKNNModel(ModelWrapper):
def __init__(self, k, prediction_thresh,
max_norm_batch_size=10000, name=''):
self.k = k
self.prediction_thresh = prediction_thresh
self.name = name
self.train_data = None
self.train_labels = None
self.max_norm_batch_size = max_norm_batch_size
self.init_op = tf.global_variables_initializer()
self.sess = tf.Session()
self.training_set_tensor = \
tf.placeholder(tf.float32, shape=[None, None])
self.test_set_tensor = tf.placeholder(tf.float32, shape=[None, None])
self.norm_tensor = compute_pairwise_dists(self.training_set_tensor,
self.test_set_tensor)
self.norm_tensor_placeholder = \
tf.placeholder(tf.float32, shape=[None, None])
self.top_k_vals_tensor, self.top_k_idx_tensor = \
tf.nn.top_k(-self.norm_tensor_placeholder, k)
self.top_k_vals_tensor = -self.top_k_vals_tensor
self.sess.run(self.init_op)
def predict_floats(self, X):
if (self.train_data is None) or (self.train_labels is None):
raise Exception("Train data and labels have not been instantiated")
composite_norm_npy = run_pairwise_dists(
self.sess, self.training_set_tensor, self.test_set_tensor,
self.norm_tensor, self.max_norm_batch_size, self.train_data, X)
top_k_idx = self.sess.run(
self.top_k_idx_tensor,
feed_dict={self.norm_tensor_placeholder: composite_norm_npy.T})
predictions = []
for j, top_k_row_idx in enumerate(top_k_idx):
top_k_nn_labels = self.train_labels[top_k_row_idx]
pred = \
1 if np.mean(top_k_nn_labels) >= self.prediction_thresh else 0
predictions.append(pred)
return predictions
def train_model(self, X, y, batch_size=None, n_epochs=None):
self.train_data = X
self.train_labels = y
class GaussianKernelNearestNeighborModel(ModelWrapper):
def __init__(self, bandwidth, max_norm_batch_size=10000, name=''):
self.bandwidth = bandwidth
self.name = name
self.train_data = None
self.train_labels = None
self.max_norm_batch_size = max_norm_batch_size
self.init_op = tf.global_variables_initializer()
self.sess = tf.Session()
self.training_set_tensor = \
tf.placeholder(tf.float32, shape=[None, None])
self.test_set_tensor = tf.placeholder(tf.float32, shape=[None, None])
self.norm_tensor = compute_pairwise_dists(self.training_set_tensor,
self.test_set_tensor)
self.norm_tensor_placeholder = \
tf.placeholder(tf.float32, shape=[None, None])
self.gaussian_kernel_tensor = \
tf.exp(-tf.square(self.norm_tensor_placeholder) / bandwidth)
self.sess.run(self.init_op)
def predict_floats(self, X):
if (self.train_data is None) or (self.train_labels is None):
raise Exception("Train data and labels have not been instantiated")
composite_norm_npy = run_pairwise_dists(
self.sess, self.training_set_tensor, self.test_set_tensor,
self.norm_tensor, self.max_norm_batch_size, self.train_data, X)
kernel_weights = self.sess.run(
self.gaussian_kernel_tensor,
feed_dict={self.norm_tensor_placeholder: composite_norm_npy.T})
predictions = []
for j, ex_weights in enumerate(kernel_weights):
ex_weights /= np.sum(ex_weights)
y_hat = np.sum(ex_weights * self.train_labels)
pred = 1 if y_hat > 0.5 else 0
predictions.append(pred)
return predictions
def train_model(self, X, y, batch_size=None, n_epochs=None):
self.train_data = X
self.train_labels = y
class SklearnModel(ModelWrapper):
def __init__(self, model, name=''):
self.model = model
self.name = name
def predict_floats(self, X):
return self.model.predict(X)
def train_model(self, X, y, batch_size=None, n_epochs=None):
self.model.fit(X, y)
# Full Tensorflow/Caffe models.
class CaffeModel(ModelWrapper):
def __init__(self, caffe_prototxt_path=None,
caffemodel_path=None, solver_prototxt_path=None):
self.caffe_prototxt_path = caffe_prototxt_path
self.caffemodel_path = caffemodel_path
self.solver_prototxt_path = solver_prototxt_path
self.model = None
def load_model(self):
self.model = caffe.Net(
self.caffe_prototxt_path, self.caffemodel_path, caffe.TEST)
def predict_floats(self, X):
self.model.blobs['data'].reshape(*X.shape)
self.model.blobs['label'].reshape(X.shape[0])
self.model.blobs['data'].data[...] = X
softmax_outputs = self.model.forward()
print(softmax_outputs)
softmax_outputs = softmax_outputs['softmax'][:, 1]
return softmax_outputs
def predict_ints(self, X):
return self.predict_floats(X)
def save_model(self, paths):
caffemodel_path = paths[0]
self.model.save(caffemodel_path)
def train_model(self, X, y):
solver = caffe.AdamSolver(self.solver_prototxt_path)
solver.net.blobs['data'].reshape(*X.shape)
solver.net.blobs['label'].reshape(X.shape[0])
solver.net.blobs['data'].data[...] = X
solver.net.blobs['label'].data[...] = y
solver.solve()
self.model = solver.net