forked from mainul94/Python-1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsol1.py
104 lines (84 loc) · 2.72 KB
/
sol1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
"""
Project Euler Problem 58:https://projecteuler.net/problem=58
Starting with 1 and spiralling anticlockwise in the following way,
a square spiral with side length 7 is formed.
37 36 35 34 33 32 31
38 17 16 15 14 13 30
39 18 5 4 3 12 29
40 19 6 1 2 11 28
41 20 7 8 9 10 27
42 21 22 23 24 25 26
43 44 45 46 47 48 49
It is interesting to note that the odd squares lie along the bottom right
diagonal ,but what is more interesting is that 8 out of the 13 numbers
lying along both diagonals are prime; that is, a ratio of 8/13 ≈ 62%.
If one complete new layer is wrapped around the spiral above,
a square spiral with side length 9 will be formed.
If this process is continued,
what is the side length of the square spiral for which
the ratio of primes along both diagonals first falls below 10%?
Solution: We have to find an odd length side for which square falls below
10%. With every layer we add 4 elements are being added to the diagonals
,lets say we have a square spiral of odd length with side length j,
then if we move from j to j+2, we are adding j*j+j+1,j*j+2*(j+1),j*j+3*(j+1)
j*j+4*(j+1). Out of these 4 only the first three can become prime
because last one reduces to (j+2)*(j+2).
So we check individually each one of these before incrementing our
count of current primes.
"""
import math
def is_prime(number: int) -> bool:
"""Checks to see if a number is a prime in O(sqrt(n)).
A number is prime if it has exactly two factors: 1 and itself.
>>> is_prime(0)
False
>>> is_prime(1)
False
>>> is_prime(2)
True
>>> is_prime(3)
True
>>> is_prime(27)
False
>>> is_prime(87)
False
>>> is_prime(563)
True
>>> is_prime(2999)
True
>>> is_prime(67483)
False
"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(number) + 1), 6):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def solution(ratio: float = 0.1) -> int:
"""
Returns the side length of the square spiral of odd length greater
than 1 for which the ratio of primes along both diagonals
first falls below the given ratio.
>>> solution(.5)
11
>>> solution(.2)
309
>>> solution(.111)
11317
"""
j = 3
primes = 3
while primes / (2 * j - 1) >= ratio:
for i in range(j * j + j + 1, (j + 2) * (j + 2), j + 1):
primes += is_prime(i)
j += 2
return j
if __name__ == "__main__":
import doctest
doctest.testmod()