forked from mainul94/Python-1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgaussian_naive_bayes.py
44 lines (35 loc) · 1.04 KB
/
gaussian_naive_bayes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# Gaussian Naive Bayes Example
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import plot_confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
def main():
"""
Gaussian Naive Bayes Example using sklearn function.
Iris type dataset is used to demonstrate algorithm.
"""
# Load Iris dataset
iris = load_iris()
# Split dataset into train and test data
X = iris["data"] # features
Y = iris["target"]
x_train, x_test, y_train, y_test = train_test_split(
X, Y, test_size=0.3, random_state=1
)
# Gaussian Naive Bayes
NB_model = GaussianNB()
NB_model.fit(x_train, y_train)
# Display Confusion Matrix
plot_confusion_matrix(
NB_model,
x_test,
y_test,
display_labels=iris["target_names"],
cmap="Blues",
normalize="true",
)
plt.title("Normalized Confusion Matrix - IRIS Dataset")
plt.show()
if __name__ == "__main__":
main()