-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathgsVisitorLinearElasticity.h
189 lines (173 loc) · 8 KB
/
gsVisitorLinearElasticity.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
/** @file gsVisitorLinearElasticity.h
@brief Visitor class for volumetric integration of the linear elasticity system.
This file is part of the G+Smo library.
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
Author(s):
O. Weeger (2012 - 2015, TU Kaiserslautern),
A.Shamanskiy (2016 - ...., TU Kaiserslautern)
*/
#pragma once
#include <gsElasticity/gsVisitorElUtils.h>
#include <gsElasticity/gsBasePde.h>
#include <gsAssembler/gsQuadrature.h>
#include <gsCore/gsFuncData.h>
namespace gismo
{
template <class T>
class gsVisitorLinearElasticity
{
public:
gsVisitorLinearElasticity(const gsPde<T> & pde_, gsSparseMatrix<T> * elimMatrix = nullptr)
: dim(0), N_D(0), pde_ptr(static_cast<const gsBasePde<T>*>(&pde_)),
elimMat(elimMatrix)
{}
void initialize(const gsBasisRefs<T> & basisRefs,
const index_t patchIndex,
const gsOptionList & options,
gsQuadRule<T> & rule)
{
GISMO_UNUSED(patchIndex);
// parametric dimension of the first displacement component
dim = basisRefs.front().dim();
// a quadrature rule is defined by the basis for the first displacement component.
rule = gsQuadrature::get(basisRefs.front(), options);
// saving necessary info
T E = options.getReal("YoungsModulus");
T pr = options.getReal("PoissonsRatio");
lambda = E * pr / ( ( 1. + pr ) * ( 1. - 2. * pr ) );
mu = E / ( 2. * ( 1. + pr ) );
forceScaling = options.getReal("ForceScaling");
localStiffening = options.getReal("LocalStiff");
// linear elasticity tensor
I = gsMatrix<T>::Identity(dim,dim);
matrixTraceTensor<T>(C,I,I);
C *= lambda;
symmetricIdentityTensor<T>(Ctemp,I);
C += mu*Ctemp;
// resize containers for global indices
globalIndices.resize(dim);
blockNumbers.resize(dim);
}
inline void evaluate(const gsBasisRefs<T> & basisRefs,
const gsGeometry<T> & geo,
const gsMatrix<T> & quNodes)
{
// store quadrature points of the element for geometry evaluation
md.points = quNodes;
// NEED_VALUE to get points in the physical domain for evaluation of the RHS
// NEED_MEASURE to get the Jacobian determinant values for integration
// NEED_GRAD_TRANSFORM to get the Jacobian matrix to transform gradient from the parametric to physical domain
md.flags = NEED_VALUE | NEED_MEASURE | NEED_GRAD_TRANSFORM;
// Compute image of the quadrature points plus gradient, jacobian and other necessary data
geo.computeMap(md);
// find local indices of the displacement basis functions active on the element
basisRefs.front().active_into(quNodes.col(0),localIndicesDisp);
N_D = localIndicesDisp.rows();
// Evaluate displacement basis functions and their derivatives on the element
basisRefs.front().evalAllDers_into(quNodes,1,basisValuesDisp);
// Evaluate right-hand side at the image of the quadrature points
pde_ptr->rhs()->eval_into(md.values[0],forceValues);
}
inline void assemble(gsDomainIterator<T> & element,
const gsVector<T> & quWeights)
{
GISMO_UNUSED(element);
// initialize local matrix and rhs
localMat.setZero(dim*N_D,dim*N_D);
localRhs.setZero(dim*N_D,1);
// Loop over the quadrature nodes
for (index_t q = 0; q < quWeights.rows(); ++q)
{
// Multiply quadrature weight by the geometry measure
const T weightForce = quWeights[q] * md.measure(q);
const T weightBody = quWeights[q] * pow(md.measure(q),1-localStiffening);
// Compute physical gradients of basis functions at q as a dim x numActiveFunction matrix
transformGradients(md,q,basisValuesDisp[1],physGrad);
// loop over active basis functions (v_j)
for (index_t i = 0; i < N_D; i++)
{
// stiffness matrix K = B_i^T * C * B_j;
setB<T>(B_i,I,physGrad.col(i));
tempK = B_i.transpose() * C;
// loop over active basis functions (v_j)
for (index_t j = 0; j < N_D; j++)
{
setB<T>(B_j,I,physGrad.col(j));
K = tempK * B_j;
for (short_t di = 0; di < dim; ++di)
for (short_t dj = 0; dj < dim; ++dj)
localMat(di*N_D+i,dj*N_D+j) += weightBody * K(di,dj);
}
}
// rhs contribution
for (short_t d = 0; d < dim; ++d)
localRhs.middleRows(d*N_D,N_D).noalias() += weightForce * forceScaling * forceValues(d,q) * basisValuesDisp[0].col(q) ;
}
}
inline void localToGlobal(const int patchIndex,
const std::vector<gsMatrix<T> > & eliminatedDofs,
gsSparseSystem<T> & system)
{
// computes global indices for displacement components
for (short_t d = 0; d < dim; ++d)
{
system.mapColIndices(localIndicesDisp, patchIndex, globalIndices[d], d);
blockNumbers.at(d) = d;
}
// push to global system
system.pushToRhs(localRhs,globalIndices,blockNumbers);
system.pushToMatrix(localMat,globalIndices,eliminatedDofs,blockNumbers,blockNumbers);
// push to the elimination system
if (elimMat != nullptr)
{
index_t globalI,globalElimJ;
index_t elimSize = 0;
for (short_t dJ = 0; dJ < dim; ++dJ)
{
for (short_t dI = 0; dI < dim; ++dI)
for (index_t i = 0; i < N_D; ++i)
if (system.colMapper(dI).is_free_index(globalIndices[dI].at(i)))
{
system.mapToGlobalRowIndex(localIndicesDisp.at(i),patchIndex,globalI,dI);
for (index_t j = 0; j < N_D; ++j)
if (!system.colMapper(dJ).is_free_index(globalIndices[dJ].at(j)))
{
globalElimJ = system.colMapper(dJ).global_to_bindex(globalIndices[dJ].at(j));
elimMat->coeffRef(globalI,elimSize+globalElimJ) += localMat(N_D*dI+i,N_D*dJ+j);
}
}
elimSize += eliminatedDofs[dJ].rows();
}
}
}
protected:
// problem info
short_t dim;
const gsBasePde<T> * pde_ptr;
// Lame coefficients and force scaling factor
T lambda, mu, forceScaling, localStiffening;
// geometry mapping
gsMapData<T> md;
// local components of the global linear system
gsMatrix<T> localMat;
gsMatrix<T> localRhs;
// local indices (at the current patch) of the displacement basis functions active at the current element
gsMatrix<index_t> localIndicesDisp;
// number of displacement basis functions active at the current element
index_t N_D;
// values and derivatives of displacement basis functions at quadrature points at the current element
// values are stored as a N_D x numQuadPoints matrix; not sure about derivatives, must be smth like N_D*dim x numQuadPoints
std::vector<gsMatrix<T> > basisValuesDisp;
// RHS values at quadrature points at the current element; stored as a dim x numQuadPoints matrix
gsMatrix<T> forceValues;
// elimination matrix to efficiently change Dirichlet degrees of freedom
gsSparseMatrix<T> * elimMat;
// all temporary matrices defined here for efficiency
gsMatrix<T> C, Ctemp,physGrad, B_i, tempK, B_j, K, I;
// containers for global indices
std::vector< gsMatrix<index_t> > globalIndices;
gsVector<index_t> blockNumbers;
};
} // namespace gismo