-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathgsElTimeIntegrator.hpp
195 lines (170 loc) · 7.07 KB
/
gsElTimeIntegrator.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
/** @file gsElTimeIntegrator.hpp
@brief A class providing time integration for dynamical elasticity.
This file is part of the G+Smo library.
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
Author(s):
O. Weeger (2012 - 2015, TU Kaiserslautern),
A.Shamanskiy (2016 - ...., TU Kaiserslautern)
*/
#pragma once
#include <gsElasticity/gsElTimeIntegrator.h>
#include <gsElasticity/gsElasticityAssembler.h>
#include <gsElasticity/gsMassAssembler.h>
#include <gsElasticity/gsIterative.h>
namespace gismo
{
template <class T>
gsElTimeIntegrator<T>::gsElTimeIntegrator(gsElasticityAssembler<T> & stiffAssembler_,
gsMassAssembler<T> & massAssembler_)
: stiffAssembler(stiffAssembler_),
massAssembler(massAssembler_)
{
initialized = false;
m_options = defaultOptions();
m_ddof = stiffAssembler.allFixedDofs();
numIters = 0;
hasSavedState = false;
solVector = gsMatrix<T>::Zero(stiffAssembler.numDofs(),1);
velVector = gsMatrix<T>::Zero(massAssembler.numDofs(),1);
accVector = gsMatrix<T>::Zero(massAssembler.numDofs(),1);
}
template <class T>
gsOptionList gsElTimeIntegrator<T>::defaultOptions()
{
gsOptionList opt = Base::defaultOptions();
opt.addInt("Scheme","Time integration scheme",time_integration::implicit_linear);
opt.addReal("Beta","Parameter beta for the time integration scheme, see Wriggers, Nonlinear FEM, p.213 ",0.25);
opt.addReal("Gamma","Parameter gamma for the time integration scheme, see Wriggers, Nonlinear FEM, p.213 ",0.5);
opt.addInt("Verbosity","Amount of information printed to the terminal: none, some, all",solver_verbosity::none);
return opt;
}
template <class T>
void gsElTimeIntegrator<T>::initialize()
{
stiffAssembler.assemble(solVector,m_ddof);
massAssembler.assemble();
gsSparseSolver<>::SimplicialLDLT solver(massAssembler.matrix());
accVector = solver.solve(stiffAssembler.rhs().middleRows(0,massAssembler.numDofs()));
initialized = true;
}
template <class T>
void gsElTimeIntegrator<T>::makeTimeStep(T timeStep)
{
if (!initialized)
initialize();
tStep = timeStep;
if (m_options.getInt("Scheme") == time_integration::implicit_linear)
newSolVector = implicitLinear();
if (m_options.getInt("Scheme") == time_integration::implicit_nonlinear)
newSolVector = implicitNonlinear();
oldVelVector = velVector;
dispVectorDiff = (newSolVector - solVector).middleRows(0,massAssembler.numDofs());
velVector = alpha4()*dispVectorDiff + alpha5()*oldVelVector + alpha6()*accVector;
accVector = alpha1()*dispVectorDiff - alpha2()*oldVelVector - alpha3()*accVector;
solVector = newSolVector;
}
template <class T>
gsMatrix<T> gsElTimeIntegrator<T>::implicitLinear()
{
if (massAssembler.numDofs() == stiffAssembler.numDofs())
{ // displacement formulation
m_system.matrix() = alpha1()*massAssembler.matrix() + stiffAssembler.matrix();
m_system.matrix().makeCompressed();
m_system.rhs() = massAssembler.matrix()*(alpha1()*solVector.middleRows(0,massAssembler.numDofs())
+ alpha2()*velVector + alpha3()*accVector) + stiffAssembler.rhs();
}
else
{ // displacement-pressure formulation
m_system.matrix() = stiffAssembler.matrix();
tempMassBlock = alpha1()*massAssembler.matrix();
tempMassBlock.conservativeResize(stiffAssembler.numDofs(),massAssembler.numDofs());
m_system.matrix().leftCols(massAssembler.numDofs()) += tempMassBlock;
m_system.matrix().makeCompressed();
m_system.rhs() = stiffAssembler.rhs();
m_system.rhs().middleRows(0,massAssembler.numDofs()) +=
massAssembler.matrix()*(alpha1()*solVector.middleRows(0,massAssembler.numDofs())
+ alpha2()*velVector + alpha3()*accVector);
}
#ifdef GISMO_WITH_PARDISO
gsSparseSolver<>::PardisoLDLT solver(m_system.matrix());
return solver.solve(m_system.rhs());
#else
gsSparseSolver<>::SimplicialLDLT solver(m_system.matrix());
return solver.solve(m_system.rhs());
#endif
numIters = 1;
return gsMatrix<T>();
}
template <class T>
gsMatrix<T> gsElTimeIntegrator<T>::implicitNonlinear()
{
gsIterative<T> solver(*this,solVector);
solver.options().setInt("Verbosity",m_options.getInt("Verbosity"));
solver.options().setInt("Solver",linear_solver::LDLT);
solver.solve();
numIters = solver.numberIterations();
return solver.solution();
}
template <class T>
int gsElTimeIntegrator<T>::numDofs() const { return stiffAssembler.numDofs(); }
template <class T>
bool gsElTimeIntegrator<T>::assemble(const gsMatrix<T> & solutionVector,
const std::vector<gsMatrix<T> > & fixedDoFs)
{
stiffAssembler.assemble(solutionVector,fixedDoFs);
if (massAssembler.numDofs() == stiffAssembler.numDofs())
{ // displacement formulation
m_system.matrix() = alpha1()*massAssembler.matrix() + stiffAssembler.matrix();
m_system.matrix().makeCompressed();
m_system.rhs() = stiffAssembler.rhs() +
massAssembler.matrix()*(alpha1()*(solVector-solutionVector) + alpha2()*velVector + alpha3()*accVector);
}
else
{ // displacement-pressure formulation
m_system.matrix() = stiffAssembler.matrix();
tempMassBlock = alpha1()*massAssembler.matrix();
tempMassBlock.conservativeResize(stiffAssembler.numDofs(),massAssembler.numDofs());
m_system.matrix().leftCols(massAssembler.numDofs()) += tempMassBlock;
m_system.matrix().makeCompressed();
m_system.rhs() = stiffAssembler.rhs();
m_system.rhs().middleRows(0,massAssembler.numDofs()) +=
massAssembler.matrix()*(alpha1()*(solVector-solutionVector).middleRows(0,massAssembler.numDofs())
+ alpha2()*velVector + alpha3()*accVector);
}
return true;
}
template <class T>
void gsElTimeIntegrator<T>::constructSolution(gsMultiPatch<T> & displacement) const
{
stiffAssembler.constructSolution(solVector,m_ddof,displacement);
}
template <class T>
void gsElTimeIntegrator<T>::constructSolution(gsMultiPatch<T> & displacement,gsMultiPatch<T> & pressure) const
{
GISMO_ENSURE(stiffAssembler.numDofs() > massAssembler.numDofs(),
"This is a displacement-only formulation. Can't construct pressure");
stiffAssembler.constructSolution(solVector,m_ddof,displacement,pressure);
}
template <class T>
void gsElTimeIntegrator<T>::saveState()
{
if (!initialized)
initialize();
solVecSaved = solVector;
velVecSaved = velVector;
accVecSaved = accVector;
ddofsSaved = m_ddof;
hasSavedState = true;
}
template <class T>
void gsElTimeIntegrator<T>::recoverState()
{
GISMO_ENSURE(hasSavedState,"No state saved!");
solVector = solVecSaved;
velVector = velVecSaved;
accVector = accVecSaved;
m_ddof = ddofsSaved;
}
} // namespace ends