-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
140 lines (115 loc) · 4.81 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os
import argparse
from datetime import datetime
from collections import defaultdict
from datetime import datetime
from pathlib import Path
import pprint
from torch import optim
import torch.nn as nn
# path to a pretrained word embedding file
#word_emb_path = '/home/devamanyu/glove.840B.300d.txt'
#assert(word_emb_path is not None)
username = Path.home().name
project_dir = Path(__file__).resolve().parent
sdk_dir = project_dir.joinpath('CMU-MultimodalSDK')
data_dir = project_dir.joinpath('Data')
data_dict = {'kemdy20': data_dir.joinpath('KEMDy20_v1_1')}
optimizer_dict = {'RMSprop': optim.RMSprop, 'Adam': optim.Adam}
activation_dict = {'elu': nn.ELU, "hardshrink": nn.Hardshrink, "hardtanh": nn.Hardtanh,
"leakyrelu": nn.LeakyReLU, "prelu": nn.PReLU, "relu": nn.ReLU, "rrelu": nn.RReLU,
"tanh": nn.Tanh}
def str2bool(v):
"""string to boolean"""
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
class Config(object):
def __init__(self, **kwargs):
"""Configuration Class: set kwargs as class attributes with setattr"""
if kwargs is not None:
for key, value in kwargs.items():
if key == 'optimizer':
value = optimizer_dict[value]
if key == 'activation':
value = activation_dict[value]
setattr(self, key, value)
# Dataset directory: ex) ./datasets/cornell/
self.dataset_dir = data_dict[self.data.lower()]
self.sdk_dir = sdk_dir
# Glove path
#self.word_emb_path = word_emb_path
# Data Split ex) 'train', 'valid', 'test'
# self.data_dir = self.dataset_dir.joinpath(self.mode)
self.data_dir = self.dataset_dir
def __str__(self):
"""Pretty-print configurations in alphabetical order"""
config_str = 'Configurations\n'
config_str += pprint.pformat(self.__dict__)
return config_str
def get_config(parse=True, **optional_kwargs):
"""
Get configurations as attributes of class
1. Parse configurations with argparse.
2. Create Config class initilized with parsed kwargs.
3. Return Config class.
"""
parser = argparse.ArgumentParser()
# Mode
parser.add_argument('--mode', type=str, default='train')
parser.add_argument('--runs', type=int, default=5)
# Bert
parser.add_argument('--use_bert', type=str2bool, default=True)
parser.add_argument('--use_cmd_sim', type=str2bool, default=True)
# Train
time_now = datetime.now().strftime('%Y-%m-%d_%H:%M:%S')
parser.add_argument('--name', type=str, default=f"{time_now}")
parser.add_argument('--num_classes', type=int, default=7)
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--eval_batch_size', type=int, default=10)
parser.add_argument('--n_epoch', type=int, default=3)
parser.add_argument('--patience', type=int, default=60)
parser.add_argument('--diff_weight', type=float, default=0.1)
parser.add_argument('--sim_weight', type=float, default=0.1)
parser.add_argument('--sp_weight', type=float, default=0.0)
parser.add_argument('--recon_weight', type=float, default=0.3)
parser.add_argument('--learning_rate', type=float, default=1e-4)
parser.add_argument('--optimizer', type=str, default='Adam')
parser.add_argument('--clip', type=float, default=1.0)
parser.add_argument('--rnncell', type=str, default='lstm')
parser.add_argument('--embedding_size', type=int, default=256)
parser.add_argument('--hidden_size', type=int, default=256)
parser.add_argument('--dropout', type=float, default=0.5)
parser.add_argument('--reverse_grad_weight', type=float, default=1.0)
# Selectin activation from 'elu', "hardshrink", "hardtanh", "leakyrelu", "prelu", "relu", "rrelu", "tanh"
parser.add_argument('--activation', type=str, default='relu')
# Model
parser.add_argument('--model', type=str,
default='LMR', help='one of {LMR, }')
# Data
parser.add_argument('--data', type=str, default='kemdy20')
# Parse arguments
if parse:
kwargs = parser.parse_args()
else:
kwargs = parser.parse_known_args()[0]
print(kwargs.data)
if kwargs.data == "mosi":
kwargs.num_classes = 1
kwargs.batch_size = 64
elif kwargs.data == "mosei":
kwargs.num_classes = 1
kwargs.batch_size = 16
elif kwargs.data == "kemdy20":
kwargs.num_classes = 7
kwargs.batch_size = 256
else:
print("No dataset mentioned")
exit()
# Namespace => Dictionary
kwargs = vars(kwargs)
kwargs.update(optional_kwargs)
return Config(**kwargs)