-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRandomWalk.stan
98 lines (84 loc) · 2.47 KB
/
RandomWalk.stan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
data {
int<lower = 0> N; // Total number of observations (missing and non-missing)
int<lower = 0> N_obs; // Number of non-missing observations
int<lower = 0> N_pt; // Number of patients
int<lower = 0> t_max[N_pt]; // Vector of time-series length (number of days) for each patient
int<lower = 1, upper = N> idx_obs[N_obs]; // Index of non-missing observations
real<lower = 0, upper = 10> S_obs[N_obs]; // Observed severity score
int<lower = 0> horizon; // Time horizon (in days) for prediction
}
transformed data {
int N_pred = N + N_pt * horizon; // Number of observations for posterior predictive check (fit + prediction)
int start[N_pt]; // Index of first observation for patient each patient
int end[N_pt]; // Index of last observation for patient each patient
int N_mis = N - N_obs; // Number of missing observations
int idx_mis[N_mis]; // Index of missing observations
if (N != sum(t_max)) {
reject("N should be equal to sum(t_max)")
}
// Start and end of each time-series
for (k in 1:N_pt) {
if (k == 1) {
start[k] = 1;
} else {
start[k] = end[k - 1] + 1;
}
end[k] = start[k] - 1 + t_max[k];
}
// Index of missing observations
{
int id = 1;
int obs[N] = rep_array(0, N);
obs[idx_obs] = rep_array(1, N_obs);
for (i in 1:N) {
if (obs[i] == 0) {
idx_mis[id] = i;
id += 1;
}
}
}
}
parameters {
real<lower = 0, upper = 10> S_mis[N_mis]; // Missing S
real<lower = 0> sigma_S; // Standard deviation of the Gaussian
}
transformed parameters {
real S[N];
S[idx_obs] = S_obs;
S[idx_mis] = S_mis;
}
model {
sigma_S ~ normal(0, 1.5);
for (k in 1:N_pt) {
// Loop over patients
for (t in (start[k] + 1):end[k]) {
// Loop over time
S[t] ~ normal(S[t - 1], sigma_S) T[0, 10];
}
}
}
generated quantities {
vector[N_pred] S_pred;
{
int i = 1; // Indexing S[t]
int i_pred = 1; // Indexing S_pred[t]
real S_prev; // S[t - 1]
for (k in 1:N_pt) {
S_pred[i_pred] = S[i]; // Initialisation
for (t in 2:(t_max[k] + horizon)) {
i_pred += 1;
if (t <= t_max[k]) {
i += 1;
S_prev = S[i - 1]; // Fit
} else if (t == (t_max[k] + 1)) {
S_prev = S[i]; // First prediction
} else {
S_prev = S_pred[i_pred - 1]; // Remaining predictions
}
S_pred[i_pred] = normal_rng(S_prev, sigma_S);
}
i_pred += 1;
i += 1;
}
}
}