forked from TheAiSingularity/graphrag-local-ollama
-
Notifications
You must be signed in to change notification settings - Fork 0
/
visualize-graphml.py
88 lines (77 loc) · 2.35 KB
/
visualize-graphml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import networkx as nx
import plotly.graph_objects as go
import numpy as np
# Load the GraphML file
graph = nx.read_graphml('output/20240708-161630/artifacts/summarized_graph.graphml')
# Create a 3D spring layout with more separation
pos = nx.spring_layout(graph, dim=3, seed=42, k=0.5)
# Extract node positions
x_nodes = [pos[node][0] for node in graph.nodes()]
y_nodes = [pos[node][1] for node in graph.nodes()]
z_nodes = [pos[node][2] for node in graph.nodes()]
# Extract edge positions
x_edges = []
y_edges = []
z_edges = []
for edge in graph.edges():
x_edges.extend([pos[edge[0]][0], pos[edge[1]][0], None])
y_edges.extend([pos[edge[0]][1], pos[edge[1]][1], None])
z_edges.extend([pos[edge[0]][2], pos[edge[1]][2], None])
# Generate node colors based on a colormap
node_colors = [graph.degree(node) for node in graph.nodes()]
node_colors = np.array(node_colors)
node_colors = (node_colors - node_colors.min()) / (node_colors.max() - node_colors.min()) # Normalize to [0, 1]
# Create the trace for edges
edge_trace = go.Scatter3d(
x=x_edges, y=y_edges, z=z_edges,
mode='lines',
line=dict(color='lightgray', width=0.5),
hoverinfo='none'
)
# Create the trace for nodes
node_trace = go.Scatter3d(
x=x_nodes, y=y_nodes, z=z_nodes,
mode='markers+text',
marker=dict(
size=7,
color=node_colors,
colorscale='Viridis', # Use a color scale for the nodes
colorbar=dict(
title='Node Degree',
thickness=10,
x=1.1,
tickvals=[0, 1],
ticktext=['Low', 'High']
),
line=dict(width=1)
),
text=[node for node in graph.nodes()],
textposition="top center",
textfont=dict(size=10, color='black'),
hoverinfo='text'
)
# Create the 3D plot
fig = go.Figure(data=[edge_trace, node_trace])
# Update layout for better visualization
fig.update_layout(
title='3D Graph Visualization',
showlegend=False,
scene=dict(
xaxis=dict(showbackground=False),
yaxis=dict(showbackground=False),
zaxis=dict(showbackground=False)
),
margin=dict(l=0, r=0, b=0, t=40),
annotations=[
dict(
showarrow=False,
text="Interactive 3D visualization of GraphML data",
xref="paper",
yref="paper",
x=0,
y=0
)
]
)
# Show the plot
fig.show()