-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
209 lines (165 loc) · 6.88 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import numpy as np
import os
import torch
import torch.nn.functional as F
from data import SpeechDataset, SpeechDataLoader, featurelen, cer, wer
from uyghur import uyghur_latin
from tqdm import tqdm
from UFormer import UFormer
from torch.optim.lr_scheduler import CosineAnnealingLR
class CustOpt:
def __init__(self, params, datalen, lr, min_lr = None):
if min_lr is None:
min_lr = lr
self.optimizer = torch.optim.Adam(params, lr=lr, weight_decay=0.000001) #, weight_decay=0.000001
self._step = 0
self.scheduler = CosineAnnealingLR(self.optimizer,T_max=datalen, eta_min = min_lr)
def step(self):
self.optimizer.step()
self.scheduler.step()
rate = self.scheduler.get_last_lr()[0]
return rate
def zero_grad(self):
self.optimizer.zero_grad()
#outputs format = B x C x T
def calctc_loss(outputs, targets, output_lengths, target_lengths):
loss = F.ctc_loss(outputs.permute(2,0,1).contiguous(), targets, output_lengths, target_lengths, blank = uyghur_latin.pad_idx, reduction='mean',zero_infinity=True)
return loss
def cal_loss(pred, gold):
"""
Calculate metrics
args:
pred: B x T x C
gold: B x T
input_lengths: B (for CTC)
target_lengths: B (for CTC)
"""
gold = gold.contiguous().view(-1) # (B*T)
pred = pred.contiguous().view(-1, pred.size(2)) # (B*T) x C
loss = F.cross_entropy(pred, gold, ignore_index=uyghur_latin.pad_idx, reduction="mean")
return loss
def validate(model, valid_loader):
chars = 0
words = 0
e_chars = 0
e_words = 0
avg_loss = 0
iter_cnt = 0
msg = ""
cer_val = 0.0
model.eval()
with torch.no_grad():
tlen = len(valid_loader)
vbar = tqdm(iter(valid_loader), leave=True, total=tlen)
for inputs, targets, input_lengths, target_lengths, _ in vbar:
inputs = inputs.to(device)
targets = targets.to(device)
outputs, tgt = model(inputs, input_lengths, targets)
loss1 = cal_loss(outputs, tgt)
loss_ctc= calctc_loss(model.ctcOut, targets, model.ctcLen, target_lengths)
loss = loss1*0.5 + loss_ctc*0.5
preds = model.decode(outputs)
targets = [uyghur_latin.decode(target) for target in targets]
for pred, src in zip(preds, targets):
e_char_cnt, char_cnt = cer(pred,src)
e_word_cnt, word_cnt = wer(pred, src)
e_chars += e_char_cnt
e_words += e_word_cnt
chars += char_cnt
words += word_cnt
iter_cnt += 1
avg_loss +=loss.item()
msg = f" VALIDATION: [CER:{e_chars/chars:.2%} ({e_chars}/{chars} letters) WER:{e_words/words:.2%} ({e_words}/{words} words), Avg loss:{avg_loss/iter_cnt:4f}]"
vbar.set_description(msg)
vbar.close()
cer_val = e_chars/chars
with open(log_name,'a', encoding='utf-8') as fp:
fp.write(msg+"\n")
#Print Last 3 validation results
result =""
result_cnt = 0
for pred, src in zip(preds, targets):
e_char_cnt, char_cnt = cer(pred,src)
e_word_cnt, word_cnt = wer(pred, src)
result += f" O:{src}\n"
result += f" P:{pred}\n"
result += f" CER: {e_char_cnt/char_cnt:.2%} ({e_char_cnt}/{char_cnt} letters), WER: {e_word_cnt/word_cnt:.2%} ({e_word_cnt}/{word_cnt} words)\n"
result_cnt += 1
if result_cnt >= 3:
break
print(result)
return cer_val
def train(model, train_loader):
total_loss = 0
iter_cnt = 0
msg =''
model.train()
pbar = tqdm(iter(train_loader), leave=True, total=mini_epoch_length)
for data in pbar:
optimizer.zero_grad()
inputs, targets, input_lengths, target_lengths, _ = data
inputs = inputs.to(device)
targets = targets.to(device)
outputs, tgt = model(inputs, input_lengths, targets)
loss1 = cal_loss(outputs, tgt)
loss_ctc = calctc_loss(model.ctcOut, targets, model.ctcLen, target_lengths)
loss = loss1*0.5 + loss_ctc*0.5
loss.backward()
lr = optimizer.step()
total_loss += loss.item()
iter_cnt += 1
msg = f'[LR: {lr: .7f} Loss: {loss.item(): .5f}, Avg loss: {(total_loss/iter_cnt): .5f}]'
pbar.set_description(msg)
if iter_cnt > mini_epoch_length:
break
pbar.close()
with open(log_name,'a', encoding='utf-8') as fp:
msg = f'Epoch[{(epoch+1):d}]:\t{msg}\n'
fp.write(msg)
if __name__ == "__main__":
device = "cuda"
os.makedirs('./results',exist_ok=True)
train_file = 'thuyg20_train.csv'
test_file = 'thuyg20_test.csv'
train_set = SpeechDataset(train_file, augumentation=True)
train_loader = SpeechDataLoader(train_set,num_workers=4, pin_memory = True, shuffle=True, batch_size=16)
validation_set = SpeechDataset(test_file, augumentation=False)
validation_loader = SpeechDataLoader(validation_set,num_workers=4, pin_memory = True, shuffle=True, batch_size=16)
print("="*50)
msg = f" Training Set: {train_file}, {len(train_set)} samples" + "\n"
msg += f" Validation Set: {test_file}, {len(validation_set)} samples" + "\n"
msg += f" Vocab Size: {uyghur_latin.vocab_size}"
print(msg)
model = UFormer(num_features_input = featurelen)
print("="*50)
log_name = model.checkpoint + '.log'
with open(log_name,'a', encoding='utf-8') as fp:
fp.write(msg+'\n')
model = model.to(device)
#Start train and validation
testfile=["test1.wav","test2.wav", "test3.wav","test4.wav","test5.wav","test6.wav"]
start_epoch = model.trained_epochs
mini_epoch_length = len(train_loader)
optimizer = CustOpt(model.parameters(), mini_epoch_length, lr = 0.00001, min_lr=0.00001)
for epoch in range(start_epoch,1000):
torch.cuda.empty_cache()
model.eval()
msg = ""
for afile in testfile:
text = model.predict(afile,device)
text = f"{afile}-->{text}\n"
print(text,end="")
msg += text
with open(log_name,'a', encoding='utf-8') as fp:
fp.write(msg+'\n')
print("="*50)
print(f"Training Epoch[{(epoch+1):d}]:")
train(model, train_loader)
if (epoch+1) % 2 == 0:
print("Validating:")
model.save((epoch+1))
curcer = validate(model,validation_loader)
if curcer < model.best_cer:
model.best_cer = curcer
model.save((epoch+1),best=True)
model.save((epoch+1))