-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmain.cpp
505 lines (412 loc) · 17 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
#include <cuda_runtime.h>
#include <unordered_map>
#include <optional>
#include <iostream>
#include <fstream>
#include <thread>
#include <chrono>
#include <utility>
#include "json.hpp"
#include "measurement_class.h"
#include "scoo_matrix_class.h"
#include "matrix_market_reader.h"
#include "resizable_gpu_memory.h"
#include "matrix_converter.h"
#include "csr_adaptive_spmv.h"
#include "gpu_matrix_multiplier.h"
#include "cpu_matrix_multiplier.h"
#include "scoo_spmv.h"
#include "cpp_itt.h"
#include "fmt/format.h"
#include "fmt/color.h"
#include "fmt/core.h"
#define CHECK_CUSP 0
#define CHECK_CPU 0
#define PREP_MATRIX_META 0
using namespace nlohmann;
using namespace std;
class time_printer
{
double reference {};
optional<double> parallel_reference;
/// Settings
const unsigned int time_width = 20;
const unsigned int time_precision = 6;
public:
explicit time_printer (
double reference_time,
std::optional<double> parallel_ref = nullopt)
: reference (reference_time)
, parallel_reference (move (parallel_ref))
{
}
void add_time (double time, fmt::color color) const
{
fmt::print (fmt::fg (color), "{2:<{0}.{1}g} ", time_width, time_precision, time);
}
void print_time (const measurement_class &measurement) const
{
const double time = measurement.get_elapsed ();
fmt::print (fmt::fg (fmt::color::yellow), "{0:<25}", measurement.get_format ());
fmt::print (": ");
add_time (time, fmt::color::white);
add_time (speedup (time), fmt::color::green);
if (parallel_reference)
add_time (parallel_speedup (time), fmt::color::green_yellow);
fmt::print ("\n");
}
double speedup (double time) const
{
return reference / time;
}
double parallel_speedup (double time) const
{
return *parallel_reference / time;
}
};
template <typename data_type>
vector<measurement_class> perform_measurement (
const string &mtx,
const matrix_market::reader &reader,
size_t free_memory,
int sm_count,
size_t shared_mem_size)
{
vector<measurement_class> measurements;
unique_ptr<csr_matrix_class<data_type>> csr_matrix;
unique_ptr<ell_matrix_class<data_type>> ell_matrix;
unique_ptr<coo_matrix_class<data_type>> coo_matrix;
{
cpp_itt::quiet_region region;
csr_matrix = make_unique<csr_matrix_class<data_type>> (reader.matrix ());
cout << "Complete converting to CSR" << endl;
if (!CHECK_CPU)
{
const size_t csr_matrix_size = csr_matrix->get_matrix_size ();
const size_t ell_matrix_size = ell_matrix_class<data_type>::estimate_size (*csr_matrix);
const size_t vec_size = std::max (reader.matrix ().meta.rows_count, reader.matrix ().meta.cols_count) * sizeof (data_type);
const size_t matrix_size = std::max (csr_matrix_size, ell_matrix_size) * sizeof (data_type);
const size_t estimated_size = matrix_size + 5 * vec_size;
if (estimated_size * sizeof (data_type) > free_memory * 0.9)
return {};
ell_matrix = make_unique<ell_matrix_class<data_type>> (*csr_matrix);
cout << "Complete converting to ELL" << endl;
coo_matrix = make_unique<coo_matrix_class<data_type>> (*csr_matrix);
cout << "Complete converting to COO" << endl;
}
}
// CPU
std::unique_ptr<data_type[]> reference_answer (new data_type[csr_matrix->meta.rows_count]);
std::unique_ptr<data_type[]> reference_answer_for_reduce_order (new data_type[csr_matrix->meta.rows_count]);
std::unique_ptr<data_type[]> cpu_y (new data_type[csr_matrix->meta.rows_count]);
std::unique_ptr<data_type[]> x (new data_type[std::max (csr_matrix->meta.rows_count, csr_matrix->meta.cols_count)]);
double cpu_naive_time {};
{
auto duration = cpp_itt::create_event_duration ("cpu_csr_spmv_single_thread_naive");
auto cpu_naive = cpu_csr_spmv_single_thread_naive (*csr_matrix, x.get (), reference_answer.get ());
measurements.push_back (cpu_naive);
cpu_naive_time = cpu_naive.get_elapsed ();
}
time_printer single_core_timer (cpu_naive_time);
single_core_timer.print_time (measurements.back ());
auto measure_multiple_times = [&] (const std::function<measurement_class(bool)> &action)
{
measurement_class result;
const unsigned int measurements_count = 20;
for (unsigned int measurement_id = 0; measurement_id < measurements_count; measurement_id++)
result += action (measurement_id == 0);
result.finalize ();
measurements.push_back (result);
return result;
};
double cpu_parallel_naive_time {};
{
auto duration = cpp_itt::create_event_duration ("cpu_csr_spmv_multi_thread_naive");
auto cpu_parallel_naive = measure_multiple_times ([&](bool) { return cpu_csr_spmv_multi_thread_naive (*csr_matrix, x.get (), cpu_y.get ()); });
cpu_parallel_naive_time = cpu_parallel_naive.get_elapsed ();
single_core_timer.print_time (cpu_parallel_naive);
}
{
auto duration = cpp_itt::create_event_duration ("cpu_csr_spmv_mkl");
auto cpu_time = measure_multiple_times ([&](bool) { return cpu_csr_spmv_mkl (*csr_matrix, x.get (), cpu_y.get (), reference_answer.get ()); });
single_core_timer.print_time (cpu_time);
}
if (CHECK_CPU)
return measurements;
time_printer multi_core_timer (cpu_naive_time, cpu_parallel_naive_time);
/// GPU Reusable memory
resizable_gpu_memory<data_type> A, x_gpu, y;
resizable_gpu_memory<unsigned int> col_ids, row_ptr;
/// GPU
{
cpp_itt::quiet_region region;
{
auto gpu_time = measure_multiple_times ([&](bool) { return gpu_csr_spmv<data_type> (*csr_matrix, A, col_ids, row_ptr, x_gpu, y, x.get (), reference_answer.get ()); });
multi_core_timer.print_time (gpu_time);
}
{
cpu_csr_spmv_single_thread_naive_with_reduce_order (*csr_matrix, x.get (), reference_answer_for_reduce_order.get ());
auto gpu_time = measure_multiple_times ([&](bool) { return gpu_csr_vector_spmv<data_type> (*csr_matrix, A, col_ids, row_ptr, x_gpu, y, x.get (), reference_answer_for_reduce_order.get ()); });
multi_core_timer.print_time (gpu_time);
}
{
auto gpu_time = measure_multiple_times ([&](bool) { return gpu_csr_adaptive_spmv<data_type> (*csr_matrix, A, col_ids, row_ptr, x_gpu, y, x.get (), reference_answer.get ()); });
multi_core_timer.print_time (gpu_time);
}
{
auto gpu_time = measure_multiple_times ([&](bool) { return gpu_csr_cusparse_spmv<data_type> (*csr_matrix, A, col_ids, row_ptr, x_gpu, y, x.get (), reference_answer.get ()); });
multi_core_timer.print_time (gpu_time);
}
if (CHECK_CUSP)
{
auto gpu_time = measure_multiple_times ([&](bool) { return gpu_csr_cusp_spmv<data_type> (mtx, *csr_matrix, A, col_ids, row_ptr, x_gpu, y, x.get (), reference_answer.get ()); });
multi_core_timer.print_time (gpu_time);
}
{
auto gpu_time = measure_multiple_times ([&](bool) { return gpu_ell_spmv<data_type> (*ell_matrix, A, col_ids, x_gpu, y, x.get (), reference_answer.get ()); });
multi_core_timer.print_time (gpu_time);
}
if (CHECK_CUSP)
{
auto gpu_time = measure_multiple_times ([&](bool) { return gpu_ell_cusp_spmv<data_type> (mtx, *ell_matrix, A, col_ids, x_gpu, y, x.get (), reference_answer.get ()); });
multi_core_timer.print_time (gpu_time);
}
{
auto gpu_time = measure_multiple_times ([&](bool) { return gpu_coo_spmv<data_type> (*coo_matrix, A, col_ids, row_ptr, x_gpu, y, x.get (), reference_answer.get ()); });
multi_core_timer.print_time (gpu_time);
}
{
scoo_matrix_class scoo_matrix (sm_count, shared_mem_size, *csr_matrix);
fmt::print ("SCOO: slice_size={}; lane_size={}; slices_count={}\n", scoo_matrix.slice_size, scoo_matrix.lane_size, scoo_matrix.slices_count);
auto gpu_time = measure_multiple_times ([&](bool print_diff) { return gpu_scoo_spmv<data_type> (print_diff, scoo_matrix, A, col_ids, row_ptr, x_gpu, y, x.get (), reference_answer.get ()); });
multi_core_timer.print_time (gpu_time);
}
if (CHECK_CUSP)
{
auto gpu_time = measure_multiple_times ([&](bool) { return gpu_coo_cusp_spmv<data_type> (mtx, *coo_matrix, A, col_ids, row_ptr, x_gpu, y, x.get (), reference_answer.get ()); });
multi_core_timer.print_time (gpu_time);
}
resizable_gpu_memory<data_type> A_coo;
resizable_gpu_memory<unsigned int> col_ids_coo;
{
hybrid_matrix_class<data_type> hybrid_matrix (*csr_matrix);
hybrid_matrix.allocate(*csr_matrix, 0.2);
auto gpu_time = measure_multiple_times ([&](bool) { return gpu_hybrid_spmv<data_type> (hybrid_matrix, A, A_coo, col_ids, col_ids_coo, row_ptr, x_gpu, y, x.get (), reference_answer.get ()); });
auto gpu_time_atomic = measure_multiple_times ([&](bool) { return gpu_hybrid_atomic_spmv<data_type> (hybrid_matrix, A, A_coo, col_ids, col_ids_coo, row_ptr, x_gpu, y, x.get (), reference_answer.get ()); });
multi_core_timer.print_time (gpu_time);
multi_core_timer.print_time (gpu_time_atomic);
}
if (0)
{
hybrid_matrix_class<data_type> hybrid_matrix (*csr_matrix);
for (double percent = 0.0; percent <= 1.0; percent += 0.35)
{
hybrid_matrix.allocate(*csr_matrix, percent);
std::string percent_str = std::to_string ((int)(percent * 100));
{
// const string label = "GPU HYBRID " + percent_str;
auto gpu_time = gpu_hybrid_spmv<data_type> (hybrid_matrix, A, A_coo, col_ids, col_ids_coo, row_ptr, x_gpu, y, x.get (), reference_answer.get ());
multi_core_timer.print_time (gpu_time);
measurements.push_back (gpu_time);
}
{
// const string label = "GPU HYBRID ATOMIC " + percent_str;
auto gpu_time = gpu_hybrid_atomic_spmv<data_type> (hybrid_matrix, A, A_coo, col_ids, col_ids_coo, row_ptr, x_gpu, y, x.get (), reference_answer.get ());
multi_core_timer.print_time (gpu_time);
measurements.push_back (gpu_time);
}
{
// const string label = "GPU HYBRID CPU COO " + percent_str;
resizable_gpu_memory<data_type> tmp;
auto gpu_time = gpu_hybrid_cpu_coo_spmv<data_type> (hybrid_matrix, A, col_ids, x_gpu, y, tmp, cpu_y.get (), x.get (), reference_answer.get ());
multi_core_timer.print_time (gpu_time);
measurements.push_back (gpu_time);
}
}
}
}
return measurements;
}
string get_filename (const string &path)
{
size_t i = path.rfind ('/', path.length ());
if (i != string::npos)
return (path.substr (i + 1, path.length () - i));
return path;
}
#include "nvml.h"
class gpu_frequency_controller
{
nvmlDevice_t nvmlDeviceId;
public:
gpu_frequency_controller ()
{
nvmlReturn_t nvml_error = nvmlInit ();
}
void fix_frequency ()
{
int active_cuda_device = 0;
cudaGetDevice (&active_cuda_device);
//1. Get device properties of active CUDA device
cudaDeviceProp activeCUDAdeviceProp;
cudaGetDeviceProperties (&activeCUDAdeviceProp, active_cuda_device);
//2. Get number of NVML devices
unsigned int nvmlDeviceCount = 0;
nvmlDeviceGetCount ( &nvmlDeviceCount );
//3. Loop over all NVML devices
for ( unsigned int nvmlDeviceIdx = 0;
nvmlDeviceIdx < nvmlDeviceCount;
++nvmlDeviceIdx )
{
//4. Obtain NVML device Id
nvmlDeviceGetHandleByIndex ( nvmlDeviceIdx, &nvmlDeviceId );
//5. Query PCIe Info of the NVML device
nvmlPciInfo_t nvmPCIInfo;
nvmlDeviceGetPciInfo ( nvmlDeviceId, &nvmPCIInfo );
//6. Compare NVML device PCI-E info with CUDA device properties
if ( static_cast<unsigned int>(activeCUDAdeviceProp.pciBusID)
== nvmPCIInfo.bus &&
static_cast<unsigned int>(activeCUDAdeviceProp.pciDeviceID)
== nvmPCIInfo.device &&
static_cast<unsigned int>(activeCUDAdeviceProp.pciDomainID)
== nvmPCIInfo.domain )
break;
}
//Query current application clock setting
unsigned int appSMclock = 0;
unsigned int appMemclock = 0;
nvmlDeviceGetApplicationsClock ( nvmlDeviceId,
NVML_CLOCK_SM,
&appSMclock );
nvmlDeviceGetApplicationsClock ( nvmlDeviceId,
NVML_CLOCK_MEM,
&appMemclock );
//Query maximum application clock setting
unsigned int maxSMclock = 0;
unsigned int maxMemclock = 0;
nvmlDeviceGetMaxClockInfo ( nvmlDeviceId,
NVML_CLOCK_SM,
&maxSMclock );
nvmlDeviceGetMaxClockInfo ( nvmlDeviceId,
NVML_CLOCK_MEM,
&maxMemclock );
fmt::print ("Max SM Clock: {}", maxSMclock);
nvmlEnableState_t isRestricted;
nvmlDeviceGetAPIRestriction ( nvmlDeviceId,
NVML_RESTRICTED_API_SET_APPLICATION_CLOCKS,
&isRestricted);
if ( NVML_FEATURE_DISABLED == isRestricted )
{
// auto return_code = nvmlDeviceSetApplicationsClocks (nvmlDeviceId, maxMemclock, maxSMclock); This function is not supported on RTX...
auto return_code = nvmlDeviceSetGpuLockedClocks (nvmlDeviceId, maxSMclock, maxSMclock);
if (return_code != NVML_SUCCESS)
fmt::print ("Can't fix gpu frequencies\n");
}
}
~gpu_frequency_controller()
{
nvmlDeviceResetGpuLockedClocks (nvmlDeviceId);
// nvmlDeviceResetApplicationsClocks (nvmlDeviceId);
nvmlShutdown ();
}
};
/**
* To run this tests you should:
*
* 1) Set cpu power mode: sudo cpupower frequency-set --governor performance
* 2) Fix cpu frequencies: sudo cpupower frequency-set --min 4500000
* 3) Check gpu frequencies: sudo nvidia-smi -ac
* 4) Enable persistence mode: sudo nvidia-smi -pm ENABLED -i 0
* 5) Fix mem,gpu frequencies: sudo nvidia-smi -ac 7000,2100
*
* Optionally restore defaults after benchmarks: sudo nvidia-smi -ac 6800,1515
*/
int main(int argc, char *argv[])
{
if (argc != 2)
{
cerr << "Usage: " << argv[0] << " /path/to/mtx_list" << endl;
return 1;
}
size_t free_gpu_mem, total_gpu_mem;
int sm_count = 0;
size_t shared_mem_size = 0;
int gpu_id = 0;
gpu_frequency_controller gpu_frequency;
if (!CHECK_CPU)
{
cudaSetDevice (gpu_id);
gpu_frequency.fix_frequency ();
cudaDeviceProp prop {};
cudaGetDeviceProperties (&prop, gpu_id);
sm_count = prop.multiProcessorCount;
shared_mem_size = prop.sharedMemPerBlock;
auto status = cudaMemGetInfo (&free_gpu_mem, &total_gpu_mem);
if (status != cudaSuccess)
{
cerr << "CUDA Can't get free memory!\n";
return 1;
}
}
ifstream list (argv[1]);
string mtx;
json measurements;
json effective_bandwidth;
json computational_throughput;
json matrices_info;
while (getline (list, mtx))
{
fmt::print ("Start loading matrix {}\n", mtx);
ifstream is (mtx);
matrix_market::reader reader (is);
auto &meta = reader.matrix ().meta;
fmt::print ("Complete loading (rows: {}; cols: {}; nnz: {}; nnzpr: {})\n", meta.rows_count, meta.cols_count, meta.non_zero_count, meta.non_zero_count / meta.rows_count);
if (!PREP_MATRIX_META)
{
unordered_map<string, vector<measurement_class>> results;
results["float"] = perform_measurement<float> (mtx, reader, free_gpu_mem, sm_count, shared_mem_size);
results["double"] = perform_measurement<double> (mtx, reader, free_gpu_mem, sm_count, shared_mem_size);
mtx = get_filename (mtx);
if (results["float"].empty () || results["double"].empty ())
continue; // Don't store result for matrices that couldn't be computed on GPU
for (auto &[type, result]: results)
{
for (auto &measurement: result)
{
measurements[type][mtx][measurement.get_format ()] = measurement.get_elapsed ();
effective_bandwidth[type][mtx][measurement.get_format ()] = measurement.get_effective_bandwidth ();
computational_throughput[type][mtx][measurement.get_format ()] = measurement.get_computational_throughput ();
}
}
}
else
{
csr_matrix_class<float> csr_matrix (reader.matrix ());
auto stat = get_rows_statistics (csr_matrix.meta, csr_matrix.row_ptr.get ());
mtx = get_filename (mtx);
matrices_info[mtx]["std_deviation"] = stat.elements_in_rows_std_deviation;
}
matrices_info[mtx]["nnz"] = reader.matrix ().meta.non_zero_count;
matrices_info[mtx]["rows"] = reader.matrix ().meta.rows_count;
matrices_info[mtx]["cols"] = reader.matrix ().meta.cols_count;
}
ofstream mi_os ("matrices_info.json");
mi_os << matrices_info.dump (2);
for (auto &precision: { "float", "double" })
{
{
ofstream os (std::string (precision) + ".json");
os << measurements[precision].dump (2);
}
{
ofstream os (std::string (precision) + "_effective_bandwidth.json");
os << effective_bandwidth[precision].dump (2);
}
{
ofstream os (std::string (precision) + "_computational_throughput.json");
os << computational_throughput[precision].dump (2);
}
}
// inf -> /home/egi/Documents/data/matrices/matrix_market/unco/raw/lp_scsd8/lp_scsd8.mtx
return 0;
}