-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCSG.js
673 lines (585 loc) · 17.2 KB
/
CSG.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
// Taken from:
// https://github.com/looeee/threejs-csg
//
// Demodulized. Merged into a single file.
// Holds a node in adaptive partitioning BSP tree, built from a collection of polygons
// by picking a polygon to split along. That polygon (and all other coplanar
// polygons) are added directly to that node and the other polygons are added to
// the front and/or back subtrees.
class BSPNode {
constructor(polygons) {
this.plane = null;
this.front = null;
this.back = null;
this.polygons = [];
if (polygons) this.build(polygons);
}
clone() {
const node = new BSPNode();
node.plane = this.plane && this.plane.clone();
node.front = this.front && this.front.clone();
node.back = this.back && this.back.clone();
node.polygons = this.polygons.map(function (p) {
return p.clone();
});
return node;
}
// Convert solid space to empty space and empty space to solid space.
invert() {
for (let i = 0; i < this.polygons.length; i++) {
this.polygons[i].negate();
}
this.plane.negate();
if (this.front) this.front.invert();
if (this.back) this.back.invert();
const temp = this.front;
this.front = this.back;
this.back = temp;
}
// Recursively remove all polygons in `polygons` that are inside this BSP
// tree.
clipPolygons(polygons) {
if (!this.plane) return polygons.slice();
let front = [];
let back = [];
for (let i = 0; i < polygons.length; i++) {
this.plane.splitPolygon(polygons[i], front, back, front, back);
}
if (this.front) front = this.front.clipPolygons(front);
if (this.back) back = this.back.clipPolygons(back);
else back = [];
return front.concat(back);
}
// Remove all polygons in this BSP tree that are inside the other BSP tree
// `bsp`.
clipTo(bsp) {
this.polygons = bsp.clipPolygons(this.polygons);
if (this.front) this.front.clipTo(bsp);
if (this.back) this.back.clipTo(bsp);
}
// Return a list of all polygons in this BSP tree.
allPolygons() {
let polygons = this.polygons.slice();
if (this.front)
polygons = polygons.concat(this.front.allPolygons());
if (this.back)
polygons = polygons.concat(this.back.allPolygons());
return polygons;
}
// Build a BSP tree out of `polygons`. When called on an existing tree, the
// new polygons are filtered down to the bottom of the tree and become new
// nodes there. Each set of polygons is partitioned using the first polygon
// (no heuristic is used to pick a good split).
build(polygons) {
if (!polygons.length) return;
if (!this.plane) this.plane = polygons[0].plane;
const front = [];
const back = [];
for (let i = 0; i < polygons.length; i++) {
this.plane.splitPolygon(
polygons[i],
this.polygons,
this.polygons,
front,
back,
);
}
if (front.length) {
if (!this.front) this.front = new BSPNode();
this.front.build(front);
}
if (back.length) {
if (!this.back) this.back = new BSPNode();
this.back.build(back);
}
}
}
var _vector1 = new THREE.Vector3();
var _vector2 = new THREE.Vector3();
class CuttingPlane extends THREE.Plane {
constructor(normal, constant) {
super(normal, constant);
}
fromPoints(a, b, c) {
const normal = b
.subVectors(b, a)
.cross(_vector2.subVectors(c, a))
.normalize();
this.normal = normal;
this.constant = normal.dot(a);
return this;
}
setFromCoplanarPoints(a, b, c) {
var normal = _vector1
.subVectors(c, b)
.cross(_vector2.subVectors(a, b))
.normalize();
this.setFromNormalAndCoplanarPoint(normal, a);
return this;
}
setFromNormalAndCoplanarPoint(normal, point) {
this.normal.copy(normal);
this.constant = -point.dot(this.normal);
return this;
}
clone() {
return new CuttingPlane().copy(this);
}
copy(plane) {
this.normal.copy(plane.normal);
this.constant = plane.constant;
return this;
}
negate() {
this.constant *= -1;
this.normal.negate();
return this;
}
// Split `polygon` by this plane if needed, then put the polygon or polygon
// fragments in the appropriate lists. Coplanar polygons go into either
// `coplanarFront` or `coplanarBack` depending on their orientation with
// respect to this plane. Polygons in front or in back of this plane go into
// either `front` or `back`.
splitPolygon(polygon, coplanarFront, coplanarBack, front, back) {
const COPLANAR = 0;
const FRONT = 1;
const BACK = 2;
const SPANNING = 3;
// tolerance used to decide if a point is on the plane.
const EPSILON = 1e-5;
// Classify each point as well as the entire polygon into one of the above
// four classes.
let polygonType = 0;
const types = [];
for (let i = 0; i < polygon.vertices.length; i++) {
const t =
this.normal.dot(polygon.vertices[i].pos) - this.constant;
const type =
t < -EPSILON ? BACK : t > EPSILON ? FRONT : COPLANAR;
polygonType |= type;
types.push(type);
}
// Put the polygon in the correct list, splitting it when necessary.
switch (polygonType) {
case COPLANAR:
(this.normal.dot(polygon.plane.normal) > 0
? coplanarFront
: coplanarBack
).push(polygon);
break;
case FRONT:
front.push(polygon);
break;
case BACK:
back.push(polygon);
break;
case SPANNING:
const f = [];
const b = [];
for (let i = 0; i < polygon.vertices.length; i++) {
const j = (i + 1) % polygon.vertices.length;
const ti = types[i];
const tj = types[j];
const vi = polygon.vertices[i];
const vj = polygon.vertices[j];
if (ti != BACK) f.push(vi);
if (ti != FRONT) b.push(ti != BACK ? vi.clone() : vi);
if ((ti | tj) == SPANNING) {
const t =
(this.constant - this.normal.dot(vi.pos)) /
this.normal.dot(vj.pos.clone().sub(vi.pos));
const v = vi.interpolate(vj, t);
f.push(v);
b.push(v.clone());
}
}
if (f.length >= 3) {
const p = new Polygon(f);
front.push(p);
}
if (b.length >= 3) {
const p = new Polygon(b);
back.push(p);
}
break;
}
}
}
// # class Polygon
// Represents a convex polygon. The vertices used to initialize a polygon must
// be coplanar and form a convex loop. They do not have to be `Vertex`
// instances but they must behave similarly (duck typing can be used for
// customization).
class Polygon {
constructor(vertices) {
this.vertices = vertices;
this.plane = new CuttingPlane().fromPoints(
vertices[0].pos.clone(),
vertices[1].pos.clone(),
vertices[2].pos.clone(),
);
}
clone() {
const vertices = this.vertices.map(function (v) {
return v.clone();
});
return new Polygon(vertices);
}
negate() {
this.vertices.reverse().map(function (v) {
v.negate();
});
this.plane.negate();
}
}
// # class Vertex
// Represents a vertex of a polygon. Use your own vertex class instead of this
// one to provide additional features like texture coordinates and vertex
// colors. Custom vertex classes need to provide a `pos` property and `clone()`,
// `flip()`, and `interpolate()` methods that behave analogous to the ones
// defined by `Vertex`. This class provides `normal` so convenience
// functions like `CSG.sphere()` can return a smooth vertex normal, but `normal`
// is not used anywhere else.
class Vertex {
constructor(pos, normal, uv) {
this.pos = pos;
if (normal) this.normal = normal;
if (uv) this.uv = uv;
}
clone() {
return new Vertex(
this.pos.clone(),
this.normal && this.normal.clone(),
this.uv && this.uv.clone(),
);
}
// Invert all orientation-specific data (e.g. vertex normal). Called when the
// orientation of a polygon is flipped.
negate() {
this.normal = this.normal && this.normal.negate();
}
// Create a new vertex between this vertex and `other` by linearly
// interpolating all properties using a parameter of `t`. Subclasses should
// override this to interpolate additional properties.
interpolate(other, t) {
let normal = null;
if (this.normal && other.normal) {
normal = this.normal.clone().lerp(other.normal, t);
}
let uv = null;
if (this.uv && other.uv) {
uv = this.uv.clone().lerp(other.uv, t);
}
return new Vertex(
this.pos.clone().lerp(other.pos, t),
normal,
uv,
);
}
}
// Constructive Solid Geometry (CSG) is a modeling technique that uses Boolean
// operations like union and intersection to combine 3D solids. This library
// implements CSG operations on meshes elegantly and concisely using BSP trees,
// and is meant to serve as an easily understandable implementation of the
// algorithm. All edge cases involving overlapping coplanar polygons in both
// solids are correctly handled.
//
// ## Implementation Details
//
// All CSG operations are implemented in terms of two functions, `clipTo()` and
// `invert()`, which remove parts of a BSP tree inside another BSP tree and swap
// solid and empty space, respectively. To find the union of `a` and `b`, we
// want to remove everything in `a` inside `b` and everything in `b` inside `a`,
// then combine polygons from `a` and `b` into one solid:
//
// a.clipTo(b);
// b.clipTo(a);
// a.build(b.allPolygons());
//
// The only tricky part is handling overlapping coplanar polygons in both trees.
// The code above keeps both copies, but we need to keep them in one tree and
// remove them in the other tree. To remove them from `b` we can clip the
// inverse of `b` against `a`. The code for union now looks like this:
//
// a.clipTo(b);
// b.clipTo(a);
// b.invert();
// b.clipTo(a);
// b.invert();
// a.build(b.allPolygons());
//
// Subtraction and intersection naturally follow from set operations. If
// union is `A | B`, subtraction is `A - B = ~(~A | B)` and intersection is
// `A & B = ~(~A | ~B)` where `~` is the complement operator.
//
// ## License
//
// Copyright (c) 2011 Evan Wallace (http://madebyevan.com/), under the MIT license.
// # class CSG
// Holds a binary space partition tree representing a 3D solid. Two solids can
// be combined using the `union()`, `subtract()`, and `intersect()` methods.
class CSG {
constructor() {
this.polygons = [];
this.material = [];
}
setFromGeometry(geometry) {
if (!(geometry instanceof THREE.BufferGeometry)) {
console.error("This library only works with three.js BufferGeometry");
return;
}
if (geometry.index !== null) {
geometry = geometry.toNonIndexed();
}
const positions = geometry.attributes.position;
const normals = geometry.attributes.normal;
const uvs = geometry.attributes.uv;
// TODO
// const colors = geometry.attributes.color;
function createVertex(index) {
const position = new THREE.Vector3(
positions.getX(index),
positions.getY(index),
positions.getZ(index)
);
const normal = normals
? new THREE.Vector3(
normals.getX(index),
normals.getY(index),
normals.getZ(index)
)
: null;
const uv = uvs ? new THREE.Vector2(uvs.getX(index), uvs.getY(index)) : null;
return new Vertex(position, normal, uv);
}
for (let i = 0; i < positions.count; i += 3) {
const v1 = createVertex(i);
const v2 = createVertex(i + 1);
const v3 = createVertex(i + 2);
this.polygons.push(new Polygon([v1, v2, v3]));
}
return this;
}
setFromMesh(mesh) {
mesh.updateWorldMatrix();
const transformedGeometry = mesh.geometry.clone();
transformedGeometry.applyMatrix4(mesh.matrix);
this.material.push(mesh.material);
this.setFromGeometry(transformedGeometry);
return this;
}
setPolygons(polygons) {
this.polygons = polygons;
return this;
}
toMesh() {
return new THREE.Mesh(this.toGeometry(), this.material[0]);
}
toGeometry() {
const geometry = new THREE.BufferGeometry();
const positions = [];
const normals = [];
const uvs = [];
const createFace = (a, b, c) => {
positions.push(
a.pos.x,
a.pos.y,
a.pos.z,
b.pos.x,
b.pos.y,
b.pos.z,
c.pos.x,
c.pos.y,
c.pos.z
);
// TODO: should not assume that all vertices have the same attributes
if (a.normal) {
normals.push(
a.normal.x,
a.normal.y,
a.normal.z,
b.normal.x,
b.normal.y,
b.normal.z,
c.normal.x,
c.normal.y,
c.normal.z
);
}
if (a.uv) {
uvs.push(a.uv.x, a.uv.y, b.uv.x, b.uv.y, c.uv.x, c.uv.y);
}
};
for (const polygon of this.polygons) {
// triangulate the polygon
for (let i = 0; i <= polygon.vertices.length - 3; i++) {
createFace(
polygon.vertices[0],
polygon.vertices[i + 1],
polygon.vertices[i + 2]
);
}
}
geometry.setAttribute(
"position",
new THREE.BufferAttribute(new Float32Array(positions), 3)
);
if (normals.length) {
geometry.setAttribute(
"normal",
new THREE.BufferAttribute(new Float32Array(normals), 3)
);
}
if (uvs.length) {
geometry.setAttribute(
"uv",
new THREE.BufferAttribute(new Float32Array(uvs), 2)
);
}
return geometry;
}
clone() {
const csg = new CSG();
csg.polygons = this.polygons.map(function (p) {
return p.clone();
});
return csg;
}
// Return a new CSG solid representing space in either this solid or in the
// solid `csg`
//
// A.union(B)
//
// +-------+ +-------+
// | | | |
// | A | | |
// | +--+----+ = | +----+
// +----+--+ | +----+ |
// | B | | |
// | | | |
// +-------+ +-------+
//
// A || B
union(operands) {
for (const operand of operands) {
// console.log('operand: ', operand);
if (!this.polygons.length) {
this.setFromMesh(operand);
} else {
// todo: support multimaterial
this.material.push(operand.material);
this.unionOperand(new CSG().setFromMesh(operand));
}
}
return this;
}
unionOperand(operand) {
const a = new BSPNode(this.polygons);
const b = new BSPNode(operand.polygons);
a.clipTo(b);
b.clipTo(a);
b.invert();
b.clipTo(a);
b.invert();
a.build(b.allPolygons());
this.polygons = a.allPolygons();
return this;
}
// Return a new CSG solid representing space in this solid but not in the
// solid `csg`
//
// A.subtract(B)
//
// +-------+ +-------+
// | | | |
// | A | | |
// | +--+----+ = | +--+
// +----+--+ | +----+
// | B |
// | |
// +-------+
//
// A && !B
subtract(operands) {
for (const operand of operands) {
if (!this.polygons.length) {
this.setFromMesh(operand);
} else {
this.material.push(operand.material);
this.subtractOperand(new CSG().setFromMesh(operand));
}
}
return this;
}
subtractOperand(operand) {
this.complement().unionOperand(operand).complement();
}
// subtractOperand(operand) {
// const a = new BSPNode(this.polygons);
// const b = new BSPNode(operand.polygons);
// a.invert();
// a.clipTo(b);
// b.clipTo(a);
// b.invert();
// b.clipTo(a);
// b.invert();
// a.build(b.allPolygons());
// a.invert();
// this.polygons = a.allPolygons();
// }
// Return a new CSG solid representing space both this solid and in the
// solid `csg`
//
// A.intersect(B)
//
// +-------+
// | |
// | A |
// | +--+----+ = +--+
// +----+--+ | +--+
// | B |
// | |
// +-------+
//
// A && B
intersect(operands) {
for (const operand of operands) {
if (!this.polygons.length) {
this.setFromMesh(operand);
} else {
this.material.push(operand.material);
this.intersectOperand(new CSG().setFromMesh(operand));
}
}
return this;
}
intersectOperand(operand) {
const a = new BSPNode(this.polygons);
const b = new BSPNode(operand.polygons);
const d = new BSPNode(this.clone().polygons);
const c = new BSPNode(operand.clone().polygons);
a.invert();
b.clipTo(a);
b.invert();
a.clipTo(b);
b.clipTo(a);
a.build(b.allPolygons());
a.invert();
c.invert();
d.clipTo(c);
d.invert();
c.clipTo(d);
d.clipTo(c);
c.build(d.allPolygons());
c.invert();
this.polygons = c.allPolygons().concat(a.allPolygons());
}
// Switch solid and empty space
// !A
complement() {
this.polygons.map((p) => {
p.negate();
});
return this;
}
}