-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevaluate_scibert.py
88 lines (77 loc) · 4.01 KB
/
evaluate_scibert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
"""Run SciBERT models over arXiv for evaluation.
Hacked up from run_as_library.py.
"""
import apache_beam as beam
import argparse
import datetime
import json
import os
import pickle
import scibert
import allennlp
from apache_beam.options.pipeline_options import PipelineOptions
from subprocess import Popen, PIPE
class PredictDoFn(beam.DoFn):
def __init__(self, model_name, remote_model_parent):
self.model_name = model_name
self.remote_model_parent = remote_model_parent
self.predictor = None
self.run_date = datetime.datetime.now().strftime("%Y-%m-%d")
def prepare_model(self):
model_prefix = "model-parent-"
tmp_dir = os.path.join(os.getcwd(), model_prefix + str(os.getpid()))
prev_model_dirs = [f for f in os.listdir(os.getcwd()) if f.startswith(model_prefix) and os.path.exists(
os.path.join(os.getcwd(), f, self.model_name, "z_done"))]
# attempt to grab an old model dir to avoid re-downloading the models
if len(prev_model_dirs) > 0:
model_dir = os.path.join(os.getcwd(), prev_model_dirs[0], self.model_name)
else:
# if we enter this block, then we weren't able to load an old model, so we need to download the model,
# populate its config, then load it
if not os.path.exists(tmp_dir):
os.mkdir(tmp_dir)
for model in ["scibert_scivocab_uncased", self.model_name]:
models_cmd = f"gsutil cp -r gs://{self.remote_model_parent}/{model} {tmp_dir}"
proc = Popen(models_cmd, shell=True, stdout=PIPE, stderr=PIPE)
output, _ = proc.communicate()
model_dir = os.path.join(tmp_dir, self.model_name)
if not os.path.exists(os.path.join(model_dir, "config.json")):
cfg = open(os.path.join(model_dir, "config-template.json")).read()
cfg = cfg.replace("PATH_TO_MODELS", os.path.sep.join(model_dir.split(os.path.sep)[:-1]))
open(os.path.join(model_dir, "config.json"), "w").write(cfg)
return model_dir
def start_bundle(self):
if self.predictor is not None:
return
model_dir = self.prepare_model()
# the following line is a necessary bad import practice, otherwise beam tries to serialize allennlp and the
# deserialization breaks on dataflow.
from scibert.models import text_classifier
from scibert.predictors.predictor import ScibertPredictor
from allennlp.predictors import Predictor
import scibert
self.predictor = Predictor.from_path(model_dir, predictor_name="text_classifier")
def process(self, record):
js = json.loads(record)
js['sentence'] = js.pop('text')
if len(js["sentence"].strip()) > 0:
results = self.predictor.predict_json(js)
results["id"] = js.get("meta")
results["model_name"] = "scibert-" + self.model_name
results["run_date"] = self.run_date
yield results
def run_pipeline(input_path, model_names, model_dir, output_path):
with beam.Pipeline(options=PipelineOptions(pipeline_args)) as p:
input_data = p | "Read From GCS" >> beam.io.ReadFromText(input_path)
for model_name in model_names:
(input_data | "Run SciBERT with " + model_name >> beam.ParDo(PredictDoFn(model_name, model_dir))
| "Write Out " + model_name + " predictions" >> beam.io.WriteToText(output_path + "-" + model_name,
file_name_suffix=".jsonl"))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("input_path")
parser.add_argument("model_list", help="list of models to run, separated with commas")
parser.add_argument("output_path")
parser.add_argument("--model_dir", help="gcs location of parent directory of models in model_list")
args, pipeline_args = parser.parse_known_args()
run_pipeline(args.input_path, args.model_list.split(","), args.model_dir, args.output_path)